У нас вы можете посмотреть бесплатно Regularity Results for Degenerate Phase Transitions, by Prof. Miguel Urbano или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Abstract This talk derives a quantitative modulus of continuity, up to the parabolic boundary, for solutions of the Cauchy–Dirichlet problem associated with a phase transition modeled upon the p-degenerate two-phase Stefan problem. Even in the classical case p = 2, this represents a twofold improvement concerning the state-of-the-art, in the sense that we discard one logarithm iteration and obtain an explicit value for the exponent appearing in the modulus. Brief Biography Miguel Urbano is a Professor of Applied Mathematics and Computational Sciences at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. Before joining KAUST in 2022, he had been a Full Professor at the University of Coimbra since 2009. He is an expert on free boundary problems and regularity theory for nonlinear PDEs, particularly on the method of intrinsic scaling for singular or degenerate-type equations. He is a Corresponding Member of the Lisbon Academy of Sciences and Editor-in-Chief of Portugaliae Mathematica. Al-Khwarizmi MASTERCLASSES - Applied Nonlinear PDEs December 30-31, 2022. Regularity Results for Degenerate Phase Transitions By Prof. Miguel Urbano, KAUST Find out more: https://cemse.kaust.edu.sa/masterclas...