У нас вы можете посмотреть бесплатно LENTES PROBLEMAS RESUELTOS DE PREPARATORIA-PREUNIVERSITARIOS или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Las primeras lentes, que ya conocían los griegos y romanos, eran esferas de vidrio llenas de agua. Estas lentes rellenas de agua se empleaban para encender fuego. En la antigüedad clásica no se conocían las auténticas lentes de vidrio; posiblemente se fabricaron por primera vez en Europa a finales del siglo XIII. Los procesos empleados en la fabricación de lentes no han cambiado demasiado desde la edad media, salvo el empleo de brea para el pulido, que introdujo Isaac Newton. El reciente desarrollo de los plásticos y de procesos especiales para moldearlos ha supuesto un uso cada vez mayor de estos materiales en la fabricación de lentes. Las lentes de plástico son más baratas, más ligeras y menos frágiles que las de vidrio. Las lentes son objetos transparentes (normalmente de vidrio), limitados por dos superficies, de las que al menos una es curva. Las lentes más comunes están basadas en el distinto grado de refracción que experimentan los rayos de luz al incidir en puntos diferentes de la lente. Entre ellas están las utilizadas para corregir los problemas de visión en gafas, anteojos o lentillas. También se usan lentes, o combinaciones de lentes y espejos, en telescopios y microscopios. Clasificación de las lentes a) Lentes convergentes o positivos b) Lentes divergentes o negativos Tipos de Lentes Clasificación de las Lentes Convergentes y Divergentes Las lentes convergentes tienen el espesor de su parte media mayor que el de su parte marginal. I. Biconvexa o convergente. II. Plano convexo. III. Menisco convexa o convergente. IV. Bicóncava. V. Plano cóncava. VI. Menisco cóncava o divergente. Elementos de una Lente a) Centro Óptico, donde todo rayo que pasa por él, no sufre desviación. b) Eje Principal, es la recta que pasa por el centro óptico. c) Foco Principal, punto en donde pasan los rayos que son paralelos. d) Eje Secundario, es la recta que pasa por los centros de curvatura. e) Radios de Curvatura(R1,R2):Son los radios de las esferas que originan la lente. f) Centros de Curvatura(C1,C2):Son los centros de las esferas que originan la lente. F) LENTECITOS Rayos notables en las lentes convergentes 1º. Rayo paralelo al eje principal se refracta y pasa por el foco. 2º. El rayo que pasa por el foco principal se refracta y sigue paralelo al eje principal. 3º. Todo rayo que pase por el centro óptico no sufre desviación. Aplicaciones Las lentes de contacto o las lentes de las gafas o anteojos corrigen defectos visuales. También se utilizan lentes en la cámara fotográfica, el microscopio, el telescopio y otros instrumentos ópticos. Otros sistemas pueden emplearse eficazmente como lentes en otras regiones del espectro electromagnético, como ocurre con las lentes magnéticas usadas en los microscopios electrónicos. (En lo relativo al diseño y uso de las lentes. En lo relativo a la lente del ojo). Formación de imágenes a través de las lentes Las lentes con superficies de radios de curvatura pequeños tienen distancias focales cortas. Una lente con dos superficies convexas siempre de corazones los rayos paralelos al eje óptico de forma que converjan en un foco situado en el lado de la lente opuesto al objeto. Una superficie de lente cóncava desvía los rayos incidentes paralelos al eje de forma divergente; a no ser que la segunda superficie sea convexa y tenga una curvatura mayor que la primera, los rayos divergen al salir de la lente, y parecen provenir de un punto situado en el mismo lado de la lente que el objeto. Estas lentes sólo forman imágenes virtuales, reducidas y no invertidas. Si la distancia del objeto es mayor que la distancia focal, una lente convergente forma una imagen real e invertida. Si el objeto está lo bastante alejado, la imagen será más pequeña que el objeto. En ese caso, el observador estará utilizando la lente como una lupa o microscopio simple. El ángulo que forma en el ojo esta imagen virtual aumentada (es decir, su dimensión angular aparente) es mayor que el ángulo que formaría el objeto si se encontrara a la distancia normal de visión. La relación de estos dos ángulos es la potencia de aumento de la lente. Una lente con una distancia focal más corta crearía una imagen virtual que formaría un ángulo mayor, por lo que su potencia de aumento sería mayor. La potencia de aumento de un sistema óptico indica cuánto parece acercar el objeto al ojo, y es diferente del aumento lateral de una cámara o telescopio, por ejemplo, donde la relación entre las dimensiones reales de la imagen real y las del objeto aumenta según aumenta la distancia focal. La cantidad de luz que puede admitir una lente aumenta con su diámetro. Como la superficie que ocupa una imagen es proporcional al cuadrado de la distancia focal de la lente, la intensidad luminosa de la superficie de la imagen es directamente proporcional al diámetro de la lente e inversamente proporcional al cuadrado de la distancia focal.