У нас вы можете посмотреть бесплатно Die Guldinsche Volumenberechnung | Volumen eines Rotationskörpers nach Guldin berechnen или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Böge 249 Die Skizze zeigt einen runden Flansch aus Stahl (r = 7850 kg/m3). Gesucht: a) sein Werkstoffvolumen b) seineMasse. Aufgabe und Bildzitat aus Aufgabensammlung Technische Mechanik 23., überarbeitete und erweiterte Auflage Springer Vieweg © Springer Fachmedien Wiesbaden 2017 Alfred Böge, Gert Böge, Wolfgang Böge Abbildungen: Graphik & Text Studio Dr. Wolfgang Zettlmeier, Barbing Klementz Publishing Services, Freiburg lernflix.at bietet individuelle Online Nachhilfe in Mechanik und Statik. Für mehr Info gehe auf https://lernflix.at Rotationskörper werden in der Geometrie jene Körper genannt, dessen Oberfläche durch Rotation einer erzeugenden Kurve um eine Rotationsachse gebildet werden. Die Rotationsachse wird auch Figurenachse genannt. Die Kurve liegt dabei in einer Ebene, und auch die Achse liegt in ebenderselben. Ein bekannter Rotationskörper ist der Torus. Diesen kannst du durch die Rotation eines Kreises bilden. Auch Kegel und Zylinder sind Rotationskörper. Volumensberechnung laut Guldinsche Regel Das Volumen und die Oberfläche kannst du mit den sogenannten Guldinschen Regeln errechnen. Ein Rotationskörper entsteht durch Drehung seiner Profilfläche um seine Symmetrieachse. Bei einer Drehung „erzeugt“ die Profilfläche das Volumen des Körpers. Man kann sich vorstellen, dass jedes Flächenteilchen an der Erzeugung mit einem bestimmten Anteil beteiligt ist. Das kleine Flächenteilchen ∆A erzeugt das Ringvolumen ∆V = 2πx ∆A. Die Summe aller Teilvolumen ist das Gesamtvolumen V. Der Summenausdruck Σ∆A x ist die Momentensumme aller Teilflächen, bezogen auf die Drehachse und damit gleich dem Moment A x0 der ganzen Profilfläche A. Daraus ergibt sich die Das Volumen eines Rotationskörpers ist das Produkt aus der Profilfläche und ihrem Schwerpunktsweg bei einer Umdrehung. Das Volumen eines Rotationskörpers ist gleich dem Produkt aus dem Flächeninhalt der erzeugenden Fläche und dem Umfang des Kreises. Diesen kannst du durch die Rotation des Schwerpunktes dieser Fläche erzeugen. Wie berechne ich die Oberfläche laut Guldin? Oberflächen oder Mantelflächen von Rotationskörpern entstehen durch Drehung ihrer Profillinie um die Symmetrieachse. Dabei ist jedes Längenteilchen der Profillinie mit einem bestimmten Flächenanteil beteiligt. Die kleine Teillänge ∆l erzeugt bei einer Drehung die Ring äche ∆A = 2πx ∆l. Die Summe aller Teilflächen ist die Mantelfläche A. Der Summenausdruck Σ∆l x ist die Momentensumme aller Teillängen, bezogen auf die Drehachse und damit gleich dem Moment der ganzen Profillinie l. Daraus ergibt sich die Guldin’sche Oberflächenregel: Die Oberfläche (Mantelfläche) eines Rotationskörpers ist das Produkt aus der Länge der Profillinie und ihrem Schwerpunktsweg bei einer Umdrehung. Der Flächeninhalt A einer Mantelfläche eines Rotationskörpers, dessen Rotationsachse die erzeugende Linie nicht schneidet, ist gleich dem Produkt aus der Länge der erzeugenden Linie (Profillinie) und dem Umfang des Kreises (Schwerpunktkreis), der durch die Rotation des Schwerpunktes der Profillinie erzeugt wird. Mechanik Nachhilfe in Villach