У нас вы можете посмотреть бесплатно Smoothing finite group actions on three-manifolds – John Pardon – ICM2018 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Topology Invited Lecture 6.13 Smoothing finite group actions on three-manifolds John Pardon Abstract: There exist continuous finite group actions on three-manifolds which are not smoothable, in the sense that they are not smooth with respect to any smooth structure. For example, Bing constructed an involution of the three-sphere whose fixed set is a wildly embedded two-sphere. However, one can still ask whether every continuous finite group action on a three-manifold can be uniformly approximated by a smooth action. We outline an approach to answering this question in the affirmative, based on the author’s work on the Hilbert–Smith conjecture in dimension three. © International Congress of Mathematicians – ICM www.icm2018.org Os direitos sobre todo o material deste canal pertencem ao Instituto de Matemática Pura e Aplicada, sendo vedada a utilização total ou parcial do conteúdo sem autorização prévia e por escrito do referido titular, salvo nas hipóteses previstas na legislação vigente. The rights over all the material in this channel belong to the Instituto de Matemática Pura e Aplicada, and it is forbidden to use all or part of it without prior written authorization from the above mentioned holder, except in the cases prescribed in the current legislation.