У нас вы можете посмотреть бесплатно Mastering AI System Design with GenAI & RAG (FAANG-Level Masterclass) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Link to register: https://bitly.cx/FnRwb Learn how FAANG+ and top tech teams design AI-first systems with GenAI, RAG, embeddings, and orchestration in this free system design masterclass led by Ahmed Elbagoury, Senior ML Engineer at Google New York and ML researcher at the University of Waterloo. 📅 Date: Dec 2nd, 2025 🕒 Time: 7:00 PM IST onward In 90 minutes, you’ll walk through a structured 6-step framework to define, build, and monitor GenAI pipelines while handling real-world challenges like hallucinations, safety, guardrails, cost, and latency. What you’ll learn in this AI System Design Masterclass: System design in the GenAI era: how enterprises build AI-first systems with RAG, embeddings, and orchestration layers. A practical 6-step framework to design, deploy, and monitor GenAI pipelines end to end. Hands-on case study: designing a personalized content generator using retrieval, guardrails, and LLM templates. How to build GenAI systems that balance reliability, safety, latency, and cost at scale. A roadmap to upskill for AI/ML/GenAI roles and upgrade your current tech stack with production-grade GenAI skills. Why this GenAI masterclass matters for your career: Built by FAANG+ and top tech leaders who have deployed AI systems at scale. Backed by Interview Kickstart’s 25K+ strong tech community, ₹23 LPA average hike, and 600+ MAANG+ instructors. Designed for software engineers, data/ML engineers, applied scientists, and tech leads who want to break into or grow in GenAI roles. Key topics covered in this session: RAG (Retrieval-Augmented Generation) architectures and retrieval pipelines. Using embeddings, vector stores, and orchestration frameworks to build robust LLM applications. Guardrails to reduce hallucinations and enforce safety, security, and compliance. Designing AI-powered support bots and deployable MVPs using industry tools like LLMs, Firebase, and modern orchestration layers. Instructor: Ahmed Elbagoury Senior ML Engineer @ Google New York. 3+ years building multimodal assistants and LLM-based chatbots with a focus on safety and security. ML Researcher and PhD candidate at the University of Waterloo. Subscribe and turn on notifications to catch more deep-dive sessions on GenAI, AI system design, FAANG+ interview prep, and real-world AI projects. 👉 To explore Interview Kickstart’s AI, ML, and GenAI programs and get a personalized roadmap, visit the link in the description or pinned comment. Link to register: https://bitly.cx/FnRwb