У нас вы можете посмотреть бесплатно Why Bad Demand Data Breaks SAP IBP Forecasts | Data Cleansing & Outlier Handling Explained или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
“Bad demand data doesn’t just distort forecasts — it silently drives wrong business decisions.” Welcome to another insightful episode of Bestowal Talks, where we simplify real-world SAP IBP concepts for planners and transformation teams. In this episode, we dive deep into a critical but often underestimated foundation of Demand Planning in SAP IBP — Data Cleansing Methods. Through a realistic, meeting-style discussion between a Business Planner and an SAP IBP Consultant, we break down how IBP handles imperfect demand history and how these settings directly influence forecast accuracy and planner confidence. We cover: 1] Handling missing demand values using Mean, Median, and Given (Fixed) values 2] Detecting abnormal demand spikes using the IQR (Interquartile Range) method 3] Correcting outliers using Mean-based, Median-based, and Tolerance-driven approaches 4] Common planner misunderstandings — and when not to blindly correct data 5] How data cleansing choices impact downstream forecasting and decision-making If you’re a Demand Planner, SAP IBP Consultant, Forecast Analyst, or Supply Chain Leader, this episode will help you understand how data cleansing in IBP is not just a technical step — but a strategic planning decision. 🎧 Tune in to learn how to build forecasts on data you can actually trust. For more SAP IBP insights, webinars, and consulting support, visit Bestowal Systems & Services.