У нас вы можете посмотреть бесплатно How to do matrix matrix multiplication using linear combinations of row vectors? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
We develop our second of four different techniques to calculate a matrix-matrix multiplication. In this case, we calculate a row partition of the product of two matrices using a linear combination of row vectors. 00:00 -Introduction 00:22 -To learn math deeply develop multiple representations 00:32 -Definition 5.2: matrix-matrix mult via linear combinations of rows 02:32 -Real learning happens when you build new knowledge for yourself https://thelearningcode.school.blog/2... 04:15 -Translate definitions into notes for deep understanding/remembering 05:13 -We use this version of MMM from definition of 5.2 to work on rows 06:40 -Use row partitions for MMM using definition 5.2 07:16 -Bring matrix A inside to rows of X and analyze the dimensions 08:17 -Discover definition 5.2 for ourselves by thinking critically 08:37 -Apply definition 5.2 to calculate row 1 of a general MMM 08:48 -Apply definition 4.2 to calculate column 1 of a general MMM 09:27 -Why must the inner dimensions agree? 10:01 -Apply definition 5.2 to calculate row 2 of a general MMM 10:52 -Apply definition 4.2 to calculate row 2 of a general MMM 12:01 -Use base cases to do pattern recognition and get to general ith row 12:29 -Our guess for the ith row of the product 12:38 -Apply definition 4.2 to calculate row i of a general MMM 13:30 -Challenge 1: Describe versions of MMM using intuitive language 14:24 -Challenge 2: Code these algorithms in your favorite CS language 15:04 -Conclusion