У нас вы можете посмотреть бесплатно Complete Guide to MLOps | Machine Learning Essentials или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
MLOps is the SECRET weapon behind every successful AI company! Want to know how Google, Amazon, and Netflix automate, scale, and deploy ML models seamlessly? This video reveals the MLOps blueprint to mastering CI/CD pipelines, real-time monitoring, and infrastructure automation. Whether you're a Data Scientist, ML Engineer, or DevOps professional, you NEED to watch this! ⬇️ By the end of this video, you'll learn: ✅ How MLOps makes Machine Learning scalable ✅ The DevOps skills needed to become an MLOps Engineer ✅ Best tools for MLOps – MLflow, Kubeflow, Airflow, etc. ✅ How to deploy, monitor & maintain ML models like a pro 🚀Fundamentals of MLOps: https://kode.wiki/4hQzoMI 💡 Don't miss out! Hit the subscribe button for more ML & DevOps content! 🚀Explore Our Top Courses & Special Offers: https://kode.wiki/3CzuOnc ⬇️Below are the topics we are going to discuss in this MLOps Video: 00:00 - Introduction to MLOps 00:20 - ML Engineering team 03:57 - Deployment and Integration Challenges 04:39 - Who is a MLOps Engineer? 05:17 - Role of an MLOps Engineer 09:50 - Difference between DevOps and MLOps Engineer 16:46 - MLOps Life Cycle 21:15 - Continuous Integration in MLOps 23:09 - Continuous Deployment in MLOps 24:53 - Continuous Training in MLOps 26:38 - Continuous Monitoring in MLOps 28:56 - Essential DevOps Tools for MLOps Pipelines 35:50 - MLOps Architecture 39:53 - MLOps Engineer Roles and Responsibilities Check out our learning paths at KodeKloud to get started: ▶️ DevOps Learning Path: https://bit.ly/DevOpsLearningPath-YT ▶️ Cloud: https://kode.wiki/CloudLearningPath ▶️ Linux: https://bit.ly/LinuxLearningPath ▶️ Kubernetes: https://bit.ly/KubernetesLearningPath ▶️ Docker: https://bit.ly/DockerLearningPath ▶️ Infrastructure as Code(IAC): https://bit.ly/IACLearningPath ▶️ Programming: https://bit.ly/ProgrammingLearningPath #mlops #devops #machinelearning #mlopsengineer #ai #automation #mlengineering #datascience #mlopsarchitecture #devopsengineer #aiops #mlmodeldeployment #mlworkflow #mlpipelines #cloudcomputing #mlopsvsdevops #deeplearning #bigdata #datascientist #kubernetes #mlflow #datapipelines #cicd #mlopsfullcourse #modelmonitoring #devopslife #mlopsbestpractices #cloudmlops #tensorflow #mltools #kubernetesml #mlmonitoring #mlscaling #mlversioning #airflow #docker #devopsworld #aiintegration #datasciencejobs #mlopsdeployment #awsmlops #mlmodels #mlopscloud #machinelearninglife #cicd #devopstools #mlopsinfrastructure #dataops #machinelearningengineer #kodekloud For more updates on courses and tips, follow us on: 🌐 Website: https://kodekloud.com/ 🌐 LinkedIn: / kodekloud 🌐 Twitter: / kodekloudhq 🌐 Facebook: / kodekloudhq 🌐 Instagram: / kodekloud 🌐 Blog: https://kodekloud.com/blog/