У нас вы можете посмотреть бесплатно opencv aruco estimatePoseSingleMarkers python или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Sure! In this tutorial, I'll guide you through using OpenCV's ArUco module to estimate the pose of a single ArUco marker in Python. ArUco markers are 2D barcodes used for various computer vision applications, including augmented reality and camera pose estimation. Estimating the pose of a marker means determining its position and orientation in 3D space concerning the camera. We will use OpenCV, a powerful open-source computer vision library, to achieve this. Before you start, make sure you have OpenCV installed in your Python environment. You can install it using pip: You should also have NumPy installed, which is used for numerical computations: This code will generate a 4x4 ArUco marker with ID 1 and save it as "marker.png" in the current directory. Now, let's estimate the pose of the generated ArUco marker using OpenCV. Make sure to replace focal_length_x, focal_length_y, center_x, center_y, k1, k2, p1, p2, k3, image_with_marker.png, and marker_size with appropriate values for your camera calibration and image. This code will load an image, detect the ArUco marker(s) in it, estimate their pose, and display the image with the estimated pose drawn on it. In this tutorial, you've learned how to create an ArUco marker, load an image with the marker, and estimate its pose using OpenCV in Python. This is a fundamental step in many computer vision applications, including augmented reality, robotics, and more. You can expand on this tutorial to handle multiple markers and integrate pose estimation into more complex projects. ChatGPT