У нас вы можете посмотреть бесплатно Bank Fraud Detection Using Machine Learning | End-to-End Data Science Interview Project | Python или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Learn how to build a Bank Fraud Detection Project using Machine Learning in Python! 🚀 In this full end-to-end tutorial, we solve a real-world financial fraud problem and show how ML models can help banks detect suspicious transactions and prevent monetary loss. This Fraud Detection Machine Learning Project is perfect for data science, AI, and ML enthusiasts who want to build a strong portfolio project and learn how fraud analytics works in real banking systems — especially useful for data science interview assignments. GitHub Code Link : https://github.com/nightfury217836/Ba... We cover the entire pipeline — from understanding raw transaction data to building high-performance fraud detection models — explained step-by-step in a practical, interview-ready approach. 🧠 What You’ll Learn: ✅ How to understand and frame a real fraud detection business problem ✅ Perform in-depth Exploratory Data Analysis (EDA) on transaction data ✅ Handle extreme class imbalance in fraud datasets ✅ Engineer powerful features like balance differences & high-amount flags ✅ Detect fraud patterns using transaction type & time behavior ✅ Build and compare ML models — Logistic Regression, Random Forest, XGBoost ✅ Evaluate models using ROC-AUC, PR-AUC, Precision, Recall & F1-score ✅ Optimize decision thresholds to reduce false positives ✅ Test model performance using confusion matrix & fraud recall metrics ✅ Understand how ML fraud systems reduce financial risk in production 🧩 Tools & Libraries Used: Python | Pandas | NumPy | Matplotlib | Seaborn | Scikit-learn | XGBoost | Joblib 💼 Project Type: Machine Learning | Data Science | Fraud Analytics | Financial Risk Modeling | Classification | Imbalanced ML | End-to-End Python Project | Interview Preparation 🔔 Don’t Forget To: 👍 Like | 💬 Comment | 🔔 Subscribe for more AI, ML, and Data Science Projects: @SouvikChai 📢 Share this project with your friends who are learning Machine Learning, Data Science and Python!