У нас вы можете посмотреть бесплатно Building Agentic AI-Powered Digital Twins for Manufacturing Operations или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Join us to learn how Sight Machine, Microsoft, Kinetic Vision, and NVIDIA are collaborating to transform manufacturing operations with Agentic AI and digital twins. Explore how Sight Machine developed their Operator Agent solution with OpenUSD, NVIDIA Omniverse™ libraries, and Microsoft Azure. Learn how Sight Machine and Kinetic Vision developers use these technologies to combine live production data, agentic AI recommendations, and physically accurate digital twins to bring new insights and intelligence to factory operations teams so they can spot issues faster and optimize production lines. Whether you're building complex systems, training autonomous robots, or streamlining simulation pipelines, this series is your front-row seat to the evolving OpenUSD ecosystem. 📆 Check out the full calendar for all of our upcoming events → https://nvda.ws/3JqaWnA 0:00 - Introduction & Welcome 2:02 - Learning Paths and Community Resources 10:06 - Manufacturing Use Cases Overview 18:18 - Layered Approaches and Digital Twin Architecture 24:32 - Building 3D Assets & Scanning Process 32:45 - Asset Modeling and Generative AI Workflows 38:30 - Technical Integration & Application Demo 47:00 - Agentic AI Recommendations in Action 53:53 - Panel Q&A: Simulation, Collaboration, Engagement 1:02:03 - Business Value & Adoption Strategies 1:08:00 - Key Takeaways & Final Thoughts 1:15:37 - Closing & Next Steps ---------------------------------------------------------------------------- ⬇️ Get Started → https://nvda.ws/4cZAZO1 👀 Explore OpenUSD → https://nvda.ws/3CeozBQ 👥 Join the Community → https://nvda.ws/3ZMfc6e