У нас вы можете посмотреть бесплатно True Facts: Bats, The Science of The Hunt или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Go to https://ground.news/ZeFrank to discover the full spectrum of truths and absurdities behind today’s headlines. Save 40% on the Ground News unlimited access Vantage plan with my link. merch: https://ze-true-store.myshopify.com/ patreon: / posts classical music: / 5-au sponsor music: https://incompetech.com/ Credits: MerlinTuttle.org - check out his incredible collection and make a donation for bat conservation! Dr. Sharon Swartz Dr. Kenny Breuer Dr. Dan Riskin - FollowTheBatSignal.com Dr. Gerald Carter Dr. Inga Geipel Dr. Logan James Dr. Rachel Page Dr Aaron Corcoran, sonarjamming.com Dr Ken Welch Dr Giulia Rossi Dr. Andrea Rummel Dr. Arie van der Meijden Dr. Simon Ripperger Dr. Cynthia Moss Dr. Laura Stidsholt Dr. Aya Goldshtein Dr. Jesse Barber Dr. Jinhong Luo Dr Graeme Lowe Citations: Bechler et al. Feeding efficiency of two coexisting nectarivorous bat species at flowers of two key-resource plants. 10.1371/journal.pone.0303227 Bergou et al. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.10.1371/journal.pbio.1002297 Berrío-Martínez et al. The role of past experience in development of feeding behavior in common vampire bats. 10.7717/peerj.7448 Boerma & Swartz. Roosting ecology drives the evolution of diverse bat landing maneuvers. 10.1016/j.isci.2024.110381 Boerma et al, Wings as inertial appendages: how bats recover from aerial stumbles. doi.org/10.1242/jeb.204255 Boerma et al. Specialized landing maneuvers in Spix's disk-winged bats 10.1242/jeb.204024 Carter et al. Food-sharing vampire bats are more nepotistic under conditions of perceived risk, doi.org/10.1093/beheco/arx006 Carter et al, Antiphonal calling allows individual discrimination in white-winged vampire bats, doi.org/10.1016/j.anbehav.2008.04.023 Cheney et al. A wrinkle in flight http://dx.doi.org/10.1098/rsif.2014.1286 Corcoran A et al. Tiger Moth Jams Bat Sonar. 10.1126/science.1174096 Corcoran & Conner. Bats jamming bats: food competition through sonar interference. 10.1126/science.1259512 Corcoran & Hristov. Convergent evolution of anti-bat sounds. Journal of comparative physiology. 10.1007/s00359-014-0924-0 Corcoran et al. Anti-bat tiger moth sounds 10.1093/czoolo/56.3.358 Corcoran & Conner. Sonar jamming in the field10.1242/jeb.076943 Eitan et al. Echolocating bats rapidly adjust their mouth gape to control spatial acquisition when scanning a target. doi.org/10.1186/s12915-022-01487-w Geipel et al, Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey, doi.org/10.1016/j.cub.2019.06.076 Håkansson et al. Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication.10.1371/journal.pbio.3001881 Harper et al, Specialized bat tongue is a hemodynamic nectar mop, doi.org/10.1073/pnas.1222726110 Jakobsen et al. Directionality of nose-emitted echolocation calls from bats without a nose leaf10.1242/jeb.171926 James et al The ontogeny of decision-making in an eavesdropping predator.10.1098/rspb.2025.0450 Kugler & Wiegrebe Echo-acoustic scanning with noseleaf and ears in phyllostomid bats.10.1242/jeb.160309 Lee et al Tongue-driven sonar beam steering by a lingual-echolocating fruit bat. doi.org/10.1371/journal.pbio.2003148 Luo & Moss, Echolocating bats rely on audiovocal feedback to adapt sonar signal design,doi.org/10.1073/pnas.1711892114 Maitra et al. Kinematics and aerodynamics of in-flight drinking in bats. 10.1098/rsif.2024.0616 Nishiumi et al, Bats integrate multiple echolocation and flight tactics to track prey doi.org/10.1016/j.cub.2024.05.062 Ripperger & Carter Social foraging in vampire bats is predicted by long-term cooperative relationships doi.org/10.1371/journal.pbio.3001366 RISKIN & RACEY, How do sucker-footed bats hold on doi.org/10.1111/j.1095-8312.2009.01362.x Riskin et al The Evolution of Terrestrial Locomotion in Bats 10.1002/9781119113713.ch12 Riskin et al Upstroke wing flexion and the inertial cost of bat flight.10.1098/rspb.2012.0346 Rossi & Welch Vampire bats rapidly fuel running with essential or non-essential amino acids from a blood meal. 10.1098/rsbl.2024.0453 Schutt. Digital morphology in the Chiroptera: the passive digital lock. 10.1159/000147544 Sterbing-D'Angelo et al. Functional role of airflow-sensing hairs on the bat wing. 10.1152/jn.00261.2016 Stidsholt et al. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability.10.7554/eLife.84190 Swartz, S et al A bird? A plane? No, it's a bat10.1017/CBO9781139045599.010 Tschapka et al. Nectar uptake in bats using a pumping-tongue mechanism.10.1126/sciadv.1500525 Teshima et al. Analysis of echolocation behavior of bats in "echo space" using acoustic simulation.10.1186/s12915-022-01253-y Yoshida et al. Doppler detection triggers instantaneous escape behavior in scanning bats.10.1016/j.isci.2024.109222