У нас вы можете посмотреть бесплатно Saltatory conduction - Conduction through Myelinated nerve fiber : Physiology medical animations или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
📌 𝐅𝐨𝐥𝐥𝐨𝐰 𝐨𝐧 𝐈𝐧𝐬𝐭𝐚𝐠𝐫𝐚𝐦:- / drgbhanuprakash 📌𝗝𝗼𝗶𝗻 𝗢𝘂𝗿 𝗧𝗲𝗹𝗲𝗴𝗿𝗮𝗺 𝗖𝗵𝗮𝗻𝗻𝗲𝗹 𝗛𝗲𝗿𝗲:- https://t.me/bhanuprakashdr 📌𝗦𝘂𝗯𝘀𝗰𝗿𝗶𝗯𝗲 𝗧𝗼 𝗠𝘆 𝗠𝗮𝗶𝗹𝗶𝗻𝗴 𝗟𝗶𝘀𝘁:- https://linktr.ee/DrGBhanuprakash Saltatory Conduction (Myelinated Nerve Fibers) | Physiology Animation for USMLE Step 1 | Nodes of Ranvier & Speed: In this high-yield physiology animation, we bring saltatory conduction to life—how action potentials appear to “leap” from one node of Ranvier to the next along myelinated axons, dramatically increasing conduction velocity while conserving energy. Myelin, produced by oligodendrocytes in the CNS and Schwann cells in the PNS, electrically insulates internodes, increasing membrane resistance and decreasing capacitance. This boosts the length constant (λ) and shortens the time constant (τ) so local circuit currents travel farther and faster to depolarize the next node. At each node, a high density of voltage-gated Na+ channels regenerates the spike; internodes contain far fewer channels, minimizing ionic flux and ATP cost for the Na+/K+ pump. The result is rapid, energy-efficient signaling with high safety factor and precise timing—core ideas tested on USMLE Step 1. We contrast saltatory vs continuous conduction: in unmyelinated fibers, depolarization must be regenerated at every micrometer of membrane, limiting speed. In myelinated fibers, internode length, axon diameter, and myelin thickness (g-ratio) tune velocity; larger diameter and thicker myelin conduct faster. Clinical correlations anchor the concept: multiple sclerosis (CNS demyelination) and Guillain–Barré syndrome (PNS demyelination) disrupt nodal architecture, reduce conduction velocity, cause conduction block, and produce symptoms like paresthesias, weakness, and fatigability. We also highlight temperature effects on conduction, refractory periods ensuring one-way propagation, and how local anesthetics (Na+ channel blockers) preferentially impair rapidly firing fibers. By integrating biophysics (R, C, λ, τ) with nodal channel biology and disease, this video gives a crystal-clear, exam-ready framework you can recall instantly in Western neurology and anesthesiology practice. #SaltatoryConduction #MyelinatedAxon #NodesOfRanvier #USMLEStep1 #Neurophysiology #Oligodendrocytes #SchwannCells #ActionPotential #NerveConduction #MultipleSclerosis #GuillainBarre #IonChannels #MedicalEducationUSA #USMLEPreparation #Step1Prep #PhysiologyAnimation #ClinicalNeuroscience #Biophysics #saltatoryconduction #actionpotential #conductionofimpulsealongaxon #nervephysiology #neuron #usmle #usmlephysiology #saltatoryconductionanimation #usmlestep1 #mbbs #neetpg #medicalvideos #medicalanimations #physiologyanimations #nervephysiologyanimations