У нас вы можете посмотреть бесплатно Meent & Tomaszewski - Fusing Machine Learning and Mixed Integer Linear Programming или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
www.pydata.org Imagine leveraging AI to make critical decisions, only to find that your perfectly optimized solution causes more problems than it solves. This talk uncovers the intriguing yet challenging fusion of Machine Learning (ML) and Mixed Integer Linear Programming (MILP). We will delve into how combining these powerful tools can lead to breakthroughs—or disasters—if not managed carefully. From misaligned objectives to feedback loops spiraling out of control, real-world scenarios will illustrate where things can go wrong and how to avoid these pitfalls. By the end, you will have a roadmap for harnessing this powerful combination without falling into common traps. PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R. PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome! 00:10 Help us add time stamps or captions to this video! See the description for details. Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...