У нас вы можете посмотреть бесплатно Stéphane Mallat: "Deep Generative Networks as Inverse Problems" или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
New Deep Learning Techniques 2018 "Deep Generative Networks as Inverse Problems" Stéphane Mallat, École Normale Supérieure Abstract: Generative Adversarial Networks and Variational Auto-Encoders provide impressive image generations from Gaussian white noise, which are not well understood. We show that such generations do not require to learn a discriminator or an encoder. They are computed with a scattering transform which preserve the deformation properties of image synthesis. The deep convolutional network generator is calculated as the solution of a regularized inverse problem. We show that this approach also applies to time-series and audio synthesis, thus providing an alternative to recurrent neural networks and wavenets. Numerical results will be shown on images and audio signals. Joint work with Tomas Angles and Mathieu Andreux, École Normale Supérieure, Collège de France. Institute for Pure and Applied Mathematics, UCLA February 6, 2018 For more information: http://www.ipam.ucla.edu/programs/wor...