У нас вы можете посмотреть бесплатно Serverless for Data Scientists| Mike Lee Williams @ PyBay2018 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This talk was presented at PyBay2018 - the Bay Area Regional Python conference. See pybay.com for more details about PyBay and click SHOW MORE for more information about this talk Abstract In this talk we'll first see the basic idea behind serverless and learn how to deploy a very simple web application to AWS Lambda using Zappa. We'll then look in detail at the "embarrassingly parallel" problems where serverless really shines for data scientists. In particular we'll take a look at PyWren, an ultra-lightweight alternative to heavy big data distributed systems such as Spark. We'll learn how PyWren uses AWS Lambda as its computational backend to churn through huge analytics tasks. PyWren opens up big data to mere mortal data scientists who don't have the budget or engineering support for a long-lived cluster. Slides: https://goo.gl/TsD1m9 Speaker Bio Mike Lee Williams does applied research into computer science, statistics and machine learning at Cloudera Fast Forward Labs. While getting his PhD in astrophysics he spent 2% of his time observing the heavens in beautiful far west Texas, and the other 98% trying to figure out how to fit straight lines to data. He once did a postdoc at the Max Planck Institute for Extraterrestrial Physics, which, amazingly, is a real place. This and other PyBay2018 videos are brought to you by our Gold Sponsor Cisco!