• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

What Are The Types Of Sampling Techniques In Statistics - Random, Stratified, Cluster, Systematic скачать в хорошем качестве

What Are The Types Of Sampling Techniques In Statistics - Random, Stratified, Cluster, Systematic 5 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
What Are The Types Of Sampling Techniques In Statistics - Random, Stratified, Cluster, Systematic
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: What Are The Types Of Sampling Techniques In Statistics - Random, Stratified, Cluster, Systematic в качестве 4k

У нас вы можете посмотреть бесплатно What Are The Types Of Sampling Techniques In Statistics - Random, Stratified, Cluster, Systematic или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон What Are The Types Of Sampling Techniques In Statistics - Random, Stratified, Cluster, Systematic в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



What Are The Types Of Sampling Techniques In Statistics - Random, Stratified, Cluster, Systematic

In this video we discuss the different types of sampling techinques in statistics, random samples, stratified samples, cluster samples, and systematic samples. Transcript/notes Sampling techniques A sample is part of a population and researchers use samples to collect data and information about a variable or variables from the larger population. The researcher would then use the data from the sample to make inferences about the population. Using samples saves time and money in data collection. To ensure the sample is an accurate representation of the population, the data collected must be unbiased. To obtain samples that are unbiased, there are mainly four different sampling techniques or methods, random sampling, stratified sampling, cluster sampling, and systematic sampling. A random sample is a sample where every member of the population has an equal chance of being selected. There are a few different ways to do this, the researcher could number each member of the population, to keep it simple, say a population of 90 members, he or she could then place numbered cards 1 through 90 in a hat or bowl or mixer and select as many cards as needed to complete the sample, or they could use a calculator or computer to generate random numbers, or they could use a random number table like this one. A stratified sample is where a researcher will divide the population into subgroups to have members from each segment of the population, and a random sample is derived from each subgroup. For example let’s say you wanted to know how much money people saved on a yearly basis. You could have subgroups of people in their 20’s, in their 30’s, in their 40’s and in their 50’s. You would then take a random sample for each of these groups. A cluster sample is obtained by dividing the population into sections or clusters, then randomly selecting one or more of the clusters and using all of its members as the members of the sample. This is often used when the population is large or there is a large geographic area. For instance let’s say you wanted to survey small business owners in a very populated city, it would be costly and time consuming to survey every single small business owner, so you could create a cluster sample using zip codes, and maybe survey 2 or 3 of the 13 different possible zip codes. Cluster samples can be efficient and cost effective; however, there are times when the cluster does not represent the population. A little note, the main difference between cluster sampling and stratified sampling is that subgroups in the stratified sample have similar characteristics and the subgroups or clusters in the cluster sample are intended to vary in characteristics. A systematic sample is where a researcher will assign a counting number to every member of the population, then select a random number, then select members for the sample at regular intervals from the starting random number that was selected. For example, let’s say you wanted to know how much time people living in a singles only apartment complex spent watching Netflix on a weekly basis. You want to get say a sample of 50 members. If there were 1000 units in the complex, you could number the units 1 to 1000, and generate a random starting number, say 234. Since you want a sample of 50, you could divide 1000 by 50 to get 20, which would be your interval number. So, 234 would be selected, then 254, 234+20, then 274, 254+20 and so on until you had your 50 members selected for your sample. This sampling method is easy to use if the population can be easily numbered. Another note, even when using the best sampling methods a sampling error, which is the difference between the results of a sample and a population, can occur. And there is one other sampling method called a convenience sample, where a researcher develops a sample from members of the population that are easy to get, or convenient. Many times these samples lead to biased results. 0:00 Types of sampling techniques 0:20 What is a random sample? 0:49 What is a stratified sample? 1:14 What is a cluster sample? 2:08 What is a systematic sample? 3:11 What is a sampling error?

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5