• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Issac Godfried - Multimodal Deep Learning in the Real World | PyData London 2024 скачать в хорошем качестве

Issac Godfried - Multimodal Deep Learning in the Real World | PyData London 2024 11 months ago

Python

Tutorial

Education

NumFOCUS

PyData

Opensource

learn

software

python 3

Julia

coding

learn to code

how to program

scientific programming

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Issac Godfried - Multimodal Deep Learning in the Real World | PyData London 2024
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Issac Godfried - Multimodal Deep Learning in the Real World | PyData London 2024 в качестве 4k

У нас вы можете посмотреть бесплатно Issac Godfried - Multimodal Deep Learning in the Real World | PyData London 2024 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Issac Godfried - Multimodal Deep Learning in the Real World | PyData London 2024 в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Issac Godfried - Multimodal Deep Learning in the Real World | PyData London 2024

Many real world business problems are multi-modal in nature and would benefit from using a combination of text, imagery, audio, and numerical data. Recently, there has been a surge in powerful deep learning models that fuse multiple modalities of data, however, fine-tuning, deploying, and versioning these models remains challenging for most companies. This tutorial will discuss some of the latest research in the field and then walk through several real world examples of fine-tuning, deploying, and serving multi-modal deep learning models using open source frameworks like HuggingFace, Kubeflow, and Django. Many real world business problems involve using multiple modalities of data. For instance, a chatbot aimed at helping someone perform maintenance on a vehicle would likely perform best if it could handle both images of the vehicle and textual questions from the user. Similarly, a model predicting length of stay in the hospital that could leverage numerical data of vitals, imagery (X-Rays, MRIs, scans), and the notes from the doctor would likely perform better than a model with just numerical data. Recently, in deep learning we have seen the emergence of models that leverage multiple modalities of data such as stable diffusion, DocVQA, VideoLLAMA, and variations of GPT for visual question and answering. We have also seen advances in the multi-modal time series forecasting domain with models like EarthFormer and Crossvivit which utilize imagery to improve forecasts. However, there are still significant challenges to successfully leveraging these (and other) multi-modal architectures when solving real world business problems. It is often difficult to fine-tune these models, manage multi-modal datasets, achieve the throughput to power real world applications, and debug poor performance in production. This tutorial aims to bridge theory and practice: we will first discuss the complexities of designing multi-modal ML systems and then dive into several real-world examples such as building a deep learning system to analyze historical documents (OCR + NLP) and then a Python powered forecast of extreme weather events using both satellite imagery and numerical time series data. Participants will leave with a solid understanding of the challenges and opportunities that multi-modal deep learning presents, the current research landscape, and open-source frameworks (such as HuggingFace, Flow Forecast, and PyTorch Geometric Temporal). Participants should have worked with Python before and have an understanding of classes, object oriented programming, and pip. Some knowledge of Docker/Kubernetes is helpful but not required. More detailed instructions for setting up local development environment will be provided on GitHub.. PyData Website: www.pydata.org LinkedIn:   / pydata-global   Twitter:   / pydata   PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R. PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome! 00:10 Help us add time stamps or captions to this video! See the description for details. Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Comments
  • Antonio Feregrino - Generating embeddings for Yu-Gi-Oh Cards with NumPy | PyData London 2024 11 months ago
    Antonio Feregrino - Generating embeddings for Yu-Gi-Oh Cards with NumPy | PyData London 2024
    Опубликовано: 11 months ago
    806
  • Alexan Hayrapetyan, Ara Yeroyan -Methods to Increase the Amount of Data for Speech Recognition 2 weeks ago
    Alexan Hayrapetyan, Ara Yeroyan -Methods to Increase the Amount of Data for Speech Recognition
    Опубликовано: 2 weeks ago
    774
  • Introduction to Generative AI 2 years ago
    Introduction to Generative AI
    Опубликовано: 2 years ago
    2023190
  • Transformers (how LLMs work) explained visually | DL5 1 year ago
    Transformers (how LLMs work) explained visually | DL5
    Опубликовано: 1 year ago
    6284070
  • AI Crew Talk: Unfiltered AI stories from the real world Streamed 3 days ago
    AI Crew Talk: Unfiltered AI stories from the real world
    Опубликовано: Streamed 3 days ago
    183
  • Duarte Carmo - Panel: The Dashboard That Grew - A Scaling Saga | PyData Global 2024 4 weeks ago
    Duarte Carmo - Panel: The Dashboard That Grew - A Scaling Saga | PyData Global 2024
    Опубликовано: 4 weeks ago
    392
  • Andrew Ng Explores The Rise Of AI Agents And Agentic Reasoning | BUILD 2024 Keynote 6 months ago
    Andrew Ng Explores The Rise Of AI Agents And Agentic Reasoning | BUILD 2024 Keynote
    Опубликовано: 6 months ago
    887571
  • Mark Moyou, PhD - Understanding the end-to-end LLM training and inference pipeline 4 weeks ago
    Mark Moyou, PhD - Understanding the end-to-end LLM training and inference pipeline
    Опубликовано: 4 weeks ago
    545
  • Patrick Deziel - Putting the data science back into LLM evaluation | PyData Global 2024 4 weeks ago
    Patrick Deziel - Putting the data science back into LLM evaluation | PyData Global 2024
    Опубликовано: 4 weeks ago
    321
  • AI-900 Study Cram v2 (the non-Generative AI bits) 10 months ago
    AI-900 Study Cram v2 (the non-Generative AI bits)
    Опубликовано: 10 months ago
    77479

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS