У нас вы можете посмотреть бесплатно Attention Matching: Fast 50x LLM Context Compaction или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this AI Research Roundup episode, Alex discusses the paper: 'Fast KV Compaction via Attention Matching' Scaling LLMs to long contexts is typically bottlenecked by the memory requirements of the Key-Value cache. This research introduces Attention Matching, a technique that compresses context in latent space to preserve model performance. Unlike previous methods that require expensive optimization, this approach uses efficient closed-form solutions to match attention outputs. The results show that it is possible to achieve 50x compaction in just seconds with very little quality loss. This provides a significant push for the Pareto frontier of compaction time versus quality in long-context models. Paper URL: https://arxiv.org/pdf/2602.16284 #AI #MachineLearning #DeepLearning #LLM #KVcache #ContextWindow #NLP #Transformers