У нас вы можете посмотреть бесплатно IXPUG Webinar: Leveraging LLMs and Differentiable Rendering for Automating Digital Twin Construction или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This presentation introduces an innovative approach that combines Large Language Models (LLMs) and differentiable rendering techniques to automate the construction of digital twins. In our approach, we employ LLMs to guide and optimize the placement of objects in digital twin scenarios. This is achieved by integrating LLMs with differentiable rendering, a method traditionally used for optimizing object positions in computer graphics based on image pixel loss. Our technique enhances this process by incorporating a second modality, namely Lidar data, resulting in faster convergence and improved accuracy. This fusion of sensor inputs proves invaluable, especially for applications like autonomous vehicles, where establishing the precise location of multiple actors in a scene is crucial. Our methodology involves several key steps: (1) Generating a point cloud of the scene via ray casting, (2) Extracting lightweight geometry from the point cloud using PlaneSLAM, (3) Creating potential camera paths through the scene, (4) Selecting the most suitable camera path by leveraging the LLM in conjunction with image segmentation and classification, and (5) Rendering the camera flight path from its origin to the final destination. The technical backbone of this system includes the use of Mitsuba for ray tracing, powered by Intel's Embree ray tracing library. This setup encompasses Lidar simulation, image rendering, and a final differentiable rendering step for precise camera positioning. Future iterations may incorporate Intel OSPRay for enhanced Lidar-like ray casting and image rendering, with a possible integration of Mitsuba for differentiable render camera positioning. The machine learning inference chain utilizes a pre-trained LLM from OpenAI accessed via LangChain, coupled with GroundingDINO for zero-shot image segmentation and classification within PyTorch. This entire workflow is optimized for performance on the latest generation of Intel CPUs. This presentation will delve into the technical details of this approach, demonstrating its efficacy in automating digital twin construction and its potential applications in various industries, particularly in the realm of autonomous vehicle navigation and scene understanding. Speaker: Krishna Kumar is an assistant professor of the Fariborz Maseeh Department of Civil, Architectural, and Environmental Engineering and an affiliate member at the Oden Institute of Computational Sciences at UT Austin. Krishna received his PhD in Engineering at the University of Cambridge, UK, in multi-scale and multiphysics modeling. Krishna's work involves developing large-scale multiphysics numerical methods and in situ visualization techniques. His research interest spans physics-based machine learning techniques, such as graph networks and differentiable simulators, to solve inverse and design problems. He leads the NSF-funded AI in Engineering Cyber Infrastructure Ecosystem and leads AI developments in DesignSafe, an NSF-funded Cyber Infrastructure facility for Natural Hazard Engineering. Download slides at: https://www.ixpug.org/resources/lever...