У нас вы можете посмотреть бесплатно AWS S3 Vectors | Cost-optimized AI-ready storage | query vectors at scale, reduce costs up to 90% или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Amazon S3 Vectors, a purpose-built durable vector storage solution that can reduce the total cost of uploading, storing, and querying vectors by up to 90 percent. Amazon S3 Vectors is the first cloud object store with native support to store large vector datasets and provide subsecond query performance that makes it affordable for businesses to store AI-ready data at massive scale. Vector search is an emerging technique used in generative AI applications to find similar data points to given data by comparing their vector representations using distance or similarity metrics. Vectors are numerical representation of unstructured data created from embedding models. You use embedding models to generate vector embeddings of your data and store them in S3 Vectors to perform semantic searches. Getting Started With S3 Vectors https://aws.amazon.com/s3/features/ve... AWS Embed CLI https://github.com/awslabs/s3vectors-... Commands Aws Configure pip install s3vectors-embed-cli PUT s3vectors-embed put --vector-bucket-name {{bucketname}} --index-name {Indexname} --model-id amazon.titan-embed-text-v2:0 --text-value "Hello, world!" QUERY s3vectors-embed query --vector-bucket-name {{bucketname}} --index-name {Indexname}--model-id amazon.titan-embed-text-v2:0 --query-input "h" --k 10 Join this channel to get access to perks: / @jascloudtech