У нас вы можете посмотреть бесплатно Leftover Hash Lemma, Revisited (Crypto 2011) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Talk at Crypto 2011, August 15, 2011. Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-Xavier Standaert, and Yu Yu Microsoft Research New England; New York University; IBM Research; Université Catholique de Louvain; CWI Amsterdam; Université Catholique de Louvain;and East China Normal University Abstract. The famous Leftover Hash Lemma (LHL) states that (almost) universal hash functions are good randomness extractors. Despite its numerous applications, LHL-based extractors suffer from the following two drawbacks: Large Entropy Loss: to extract $v$ bits from distribution $X$ of min-entropy $m$ which are $\epsilon$-close to uniform, one must set $v \le m - 2*\log(1/\epsilon)$, meaning that the entropy loss $L = m-v \ge 2*\log(1/\epsilon)$. Large Seed Length: the seed length $n$ of (almost) universal hash function required by the LHL must be at least $n \ge \min(u-v, v + 2*\log(1/\epsilon))-O(1)$, where $u$ is the length of the source. Quite surprisingly, we show that both limitations of the LHL — large entropy loss and large seed — can often be overcome (or, at least, mitigated) in various quite general scenarios. First, we show that entropy loss could be reduced to $L = \log (1/\epsilon)$ for the setting of deriving secret keys for a wide range of cryptographic applications. Specifically, the security of these schemes with an LHL-derived key gracefully degrades from $\epsilon$ to at most $\epsilon+\sqrt{\epsilon 2^{-L}}$. (Notice that, unlike standard LHL, this bound is meaningful even when one extracts more bits than the min-entropy we have!) Based on these results we build a general computational extractor that enjoys low entropy loss and can be used to instantiate a generic key derivation function for any cryptographic application. Second, we study the soundness of the natural expand-then-extract approach, where one uses a pseudorandom generator (PRG) to expand a short "input seed" $S$ into a longer "output seed" $S'$, and then use the resulting $S'$ as the seed required by the LHL (or, more generally, by any randomness extractor). We show that, in general, the expand-then extract approach is not sound if the Decisional Diffie-Hellman assumption is true. Despite that, we show that it is sound either: (1) when extracting a "small" (logarithmic in the security of the PRG) number of bits; or (2) in minicrypt. Implication (2) suggests that the expand-then-extract approach is likely secure when used with "practical" PRGs, despite lacking a reductionist proof of security! See http://www.iacr.org/cryptodb/data/pap...