У нас вы можете посмотреть бесплатно Why Deleting 50% of a Neural Network Actually Works или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Imagine trying to learn a skill, but every few minutes, half of your brain cells are randomly turned off. It sounds like a disaster, but in the world of Artificial Intelligence, this is exactly how you build a champion. This video explores "Dropout," the counter-intuitive technique that revolutionized deep learning by forcing neural networks to stop relying on specific pathways. In this video you will discover: • Why "co-adaptation" makes neural networks brittle and weak. • How randomly removing neurons prevents overfitting. • The simple math behind the "weight-scaling" trick used at test time. • Why this method worked across vision, speech, and text classification. By introducing chaos and failure during training, Dropout ensures that the AI learns robust features that actually work in the real world, rather than just memorizing the textbook. #Dropout #MachineLearning #DeepLearning #Overfitting #NeuralNetworks #AIResearch #TechExplained #DataScience #ArtificialIntelligence #Regularization