У нас вы можете посмотреть бесплатно How Can Machine Learning Assist to Improve JVM Performance или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Many developers are either unaware of or prefer not to use JVM flags when running their Java applications, especially those requiring complex numerical inputs, such as memory-related flags. Despite the abundance of these flags, tuning even just one or two can significantly enhance application performance, which is critical in performance-sensitive scenarios. In this talk, I am going to explain an approach for auto tuning JVM flags that I studied in my master’s thesis which was in collaboration with Oracle. In my master's thesis, I explored five different machine learning models trained on data that was extracted from the G1 GC logs of a Java application, with the goal of improving its throughput and latency. The results were promising. I believe that by sharing these tools and ideas, developers struggling to optimize memory-related JVM flags could not only benefit from this approach but also find it an enjoyable process. More on Yagmur's Thesis ➤ https://inside.java/2025/01/13/thesis... Presented by Yagmur Eren (Java Platform Group - Oracle) during Jfokus 2025 ➤ https://www.jfokus.se Tags: #Java, #GC, #JVM, #OpenJDK