У нас вы можете посмотреть бесплатно Self Dual Functions in Boolean Algebra || Lesson 52 || Digital Electronics || Learning Monkey || или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Here we will try to understand the Self Dual Functions in Boolean Algebra. A function is said to be self-dual if it's dual is equivalent to the given function. f(x, y, z) = XY+YZ+ZX is a dual function. Because if we find the dual the dual of the function can be simplified to the given function. The switching function is said to be self-dual if: 1. The given function is a neutral function. 2. The function must not contain two mutually exclusive terms. What is meant by mutually exclusive terms? The term obtained by the complementing each value of term X is called as mutually exclusive terms. The self-dual functions are closed under complementation. This means the complement of a self-dual function is also a self-dual function. The number of self-dual functions possible is 2^2^n-1 Link for playlists: / @wisdomerscse Link for our website: https://learningmonkey.in Follow us on Facebook @ / learningmonkey Follow us on Instagram @ / learningmonkey1 Follow us on Twitter @ / _learningmonkey Mail us @ [email protected]