У нас вы можете посмотреть бесплатно Curl and divergence of a vector field, Multivariable Calculus или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this lecture, we explore differentiation operations applied to vector fields F, focusing on the concepts of curl and divergence. We look at the computation of each, and discuss the meaning of the result. These operations are critical in understanding the behavior of vector fields in ℝ^2 and ℝ^3 and are applicable in subjects like fluid dynamics. We discuss the 2D scalar curl, the curl in ℝ3, and the divergence of a vector field. A Then we end with a summary of ∇ operations of grad, curl, and div (exterior derivatives). We examine the interplay between these operations, such as the zero curl of a gradient and the zero divergence of a curl. This knowledge lays the foundation for understanding fundamental theorems in multi-variable calculus, including Green's theorem, Stokes' theorem, and the Divergence theorem. Key Points 2D Scalar Curl: Calculated as 𝑄𝑥−𝑃𝑦 for vector fields in ℝ2, indicating local spinning tendency. Curl in ℝ3: A cross product operation resulting in a vector indicating spinning behavior. Divergence of a Vector Field: Measures the tendency of a vector field to expand or contract. Irrotational Vector Fields: Vector fields with a curl of zero, indicating no spinning. Incompressibility and Divergence: Incompressible vector fields have a divergence of zero. Combinations of Operations: The curl of a gradient and the divergence of a curl both result in zero. Laplacian of a Function: The divergence of the gradient of a function, indicating harmonicity when zero. (Multivariable Calculus Unit 7 Lecture 1) #gradient #calculus #multivariablecalculus #mathematics #iitjammathematics #calculus3