У нас вы можете посмотреть бесплатно Maria Llambrich: GcDUO: automating GC×GC-MS data analysis via PARAFAC and PARAFAC2 (MDCW 2026) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🎤 Presenter: Maria Llambrich (Institut d’Investigació Sanitària Pere Virgili) 💾 PDF presentation: https://gcms.labrulez.com/labrulez-bu... Abstract Multidimensional chromatography-mass spectrometry (MS) is a powerful analytical technique that integrates two or more chromatographic separations with MS, offering superior resolution, increased signal-to-noise, and selectivity for complex sample analysis. Despite its potential, its adoption remains limited due to data complexity and processing challenges. Chemometric approaches, particularly multiway models like Parallel Factor Analysis (PARAFAC), have proven effective in addressing these challenges by enabling the extraction of meaningful chemical information from multidimensional datasets. However, traditional PARAFAC is constrained by its assumption of data tri-linearity, which may not be valid in all cases, where data have misalignments. To overcome these limitations, we present GcDUO, an open-source data processing software that enables annotation, deconvolution, and analysis of batch GC×GC-MS data (Llambrich et al., Briefings in Bioinformatics 2025, doi: 10.1093/bib/bbaf080, https://github.com/mariallr/GcDuo). GcDUO, implemented in R, accepts non-vendor-specific standardized CDF files, and rearranges the data into four-dimensional tensor structures, preserving the GC×GC-MS data structure. GcDUO integrates advanced chemometric methods, including PARAFAC and PARAFAC2, for a more accurate and comprehensive analysis. PARAFAC is particularly useful for deconvoluting overlapping peaks and extracting pure chemical signals, while PARAFAC2 relaxes the tri-linearity constraint, allowing batch analysis for samples. GcDUO achieves both high-resolution peak detection and robust quantification across complex GC×GC-MS datasets. The software was validated against the gold-standard software for comprehensive GC, demonstrating a high correlation (R² = 0.9) in peak area measurements, confirming its effectiveness and reliability. GcDUO provides a valuable, open-source platform in the comprehensive chromatography field, enabling more accessible and customizable data analysis. 💡 The Multidimensional Chromatography Workshop (MDCW) Profile LabRulezGCMS (EN): 👉 https://gcms.labrulez.com/companies/218 💡 The Multidimensional Chromatography Workshop (MDCW) Profile LabRulezLCMS (EN): 👉 https://lcms.labrulez.com/companies/218