У нас вы можете посмотреть бесплатно AI for Health #24 Making Neural Nets More Causally Accurate for Clinical Applications, David Page или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this AI for Health Webinar, Dr. David Page (James B. Duke Distinguished Professor & Chair of Biostatistics & Bioinformatics, Duke University) presents his research on making neural networks more causally accurate for clinical applications. He discusses why causal accuracy matters in healthcare AI, approaches such as matching, propensity-score methods, and causal transformers, and new theoretical contributions including a model of probably approximately correct causal discovery and a formal connection between neural networks and probabilistic graphical models. Dr. Page’s work focuses on algorithms for data mining and machine learning applied to biomedical data, especially de-identified electronic health records, high-throughput genetic and molecular data, and complex multi-relational data. He explores methods for finding causal relationships and producing human-interpretable outputs that can improve healthcare AI. 📌 Recorded as part of the AI for Health Webinar Series Speaker lineup: https://sites.google.com/view/ai4health/ Past recordings: • AI for health webinar #AIforHealth #CausalAI #HealthcareAI #NeuralNetworks #ClinicalAI #KeijiAI