У нас вы можете посмотреть бесплатно Master Pivot Queries in SQL | Analyze Customer Support Tickets Like a Pro (Step-by-Step Tutorial или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Master Pivot Queries in SQL | Analyze Customer Support Tickets Like a Pro (Step-by-Step Tutorial Video Description: 📊 Unlock the power of Pivot Queries in SQL to transform messy customer support ticket data into actionable insights! In this tutorial, you’ll learn how to analyze ticket trends, prioritize issues, and optimize support workflows using real-world SQL techniques. 🔍 What You’ll Learn: ✅ Why Pivot Queries Matter: Turn rows into columns to summarize ticket statuses, priorities, and resolution times. ✅ Step-by-Step SQL Tutorial: Write pivot queries to analyze tickets by category, agent performance, or month-by-month trends. ✅ Real Business Scenario: Apply pivot tables to answer questions like: Which support agents resolve high-priority tickets fastest? How many tickets are open vs. closed per category? What’s the average resolution time by month or team? ✅ Pro Tips: Optimize queries for readability and performance (using CASE statements, GROUP BY, and aggregate functions). 🛠 Tools Used: SQL (Works in PostgreSQL, MySQL, BigQuery, etc.) Sample Customer Support Dataset (Download in the description!) -- Create sample support tickets table CREATE TABLE SupportTickets ( TicketID INT IDENTITY(1,1) PRIMARY KEY, Department VARCHAR(50), PriorityLevel VARCHAR(20), CreatedDate DATETIME, Status VARCHAR(20) ); -- Insert sample data INSERT INTO SupportTickets (Department, PriorityLevel, CreatedDate, Status) VALUES -- IT Department ('IT', 'Low', '2025-04-20 09:15:00', 'Closed'), ('IT', 'Medium', '2025-04-21 10:30:00', 'Open'), ('IT', 'Medium', '2025-04-22 14:45:00', 'Open'), ('IT', 'High', '2025-04-23 08:20:00', 'In Progress'), ('IT', 'Critical', '2025-04-24 16:10:00', 'In Progress'), ('IT', 'Low', '2025-04-25 11:05:00', 'Open'), ('IT', 'Medium', '2025-04-26 13:40:00', 'Closed'), ('IT', 'High', '2025-04-27 15:30:00', 'Open'), -- HR Department ('HR', 'Low', '2025-04-20 10:20:00', 'Closed'), ('HR', 'Low', '2025-04-21 11:45:00', 'Closed'), ('HR', 'Medium', '2025-04-22 09:30:00', 'Open'), ('HR', 'Medium', '2025-04-23 14:15:00', 'In Progress'), ('HR', 'High', '2025-04-24 16:50:00', 'Open'), ('HR', 'Low', '2025-04-25 08:25:00', 'Closed'), ('HR', 'Medium', '2025-04-26 13:10:00', 'Open'), -- Finance Department ('Finance', 'Medium', '2025-04-20 08:45:00', 'Closed'), ('Finance', 'High', '2025-04-21 10:15:00', 'In Progress'), ('Finance', 'Critical', '2025-04-22 15:30:00', 'Open'), ('Finance', 'Low', '2025-04-23 11:20:00', 'Closed'), ('Finance', 'Medium', '2025-04-24 14:05:00', 'Open'), ('Finance', 'High', '2025-04-25 09:40:00', 'In Progress'), ('Finance', 'Critical', '2025-04-26 16:25:00', 'Open'), -- Sales Department ('Sales', 'Low', '2025-04-20 13:10:00', 'Closed'), ('Sales', 'Low', '2025-04-21 09:25:00', 'Closed'), ('Sales', 'Medium', '2025-04-22 11:50:00', 'Open'), ('Sales', 'High', '2025-04-23 15:35:00', 'In Progress'), ('Sales', 'Medium', '2025-04-24 10:45:00', 'Open'), ('Sales', 'Low', '2025-04-25 14:20:00', 'Closed'), ('Sales', 'High', '2025-04-26 08:15:00', 'Open'); SQL pivot query,SQL tutorials,SQL for beginners,SQL tutorial for beginners,SQL for data analysis,SQL interview questions,SQL vs NoSQL,SQL server management studio,SQL injection explained,SQL queries examples,SQL joins tutorial,SQL database design,SQL optimization techniques,SQL for web development,SQL certification courses,SQL best practices,SQL reporting tools,SQL for business intelligence,SQL Pivot Query 👩💻 Perfect For: Data Analysts building support dashboards Customer Support Managers tracking KPIs SQL beginners eager to tackle real business problems ⏱ Timestamps: 00:00 - Why Pivot Queries? (Business Use Case) 02:15 - Sample Dataset Walkthrough 04:30 - Basic Pivot with CASE Statements 08:10 - Dynamic Pivots for Monthly Trends 12:45 - Analyze Agent Performance by Ticket Priority 16:20 - Advanced Tips & Common Mistakes 💬 Got Questions? Drop them in the comments! Let’s turn your SQL skills into a superpower for customer support analytics. 🔔 Subscribe for more SQL tutorials, data analysis tips, and real-world business scenarios! SQL pivot queries tutorial for customer support” Analyze support tickets with SQL pivot tables” Customer support KPI analysis using SQL How to pivot data in SQL for ticket tracking SQL for customer support analytics step-by-step Agent performance analysis SQL queries Dynamic pivot queries in SQL real-world example Customer support ticket trends SQL tutorial Optimize support workflows with SQL pivot queries SQL for customer support teams: pivot tables explained #SQL #DataAnalysis #CustomerSupport #DataAnalytics #LearnSQL Sponser Link : https://www.everbee.io/?via=mayurkumar link : https://shorturl.at/dkHOW Please note, these links are affiliate links, which means that I may get a commission or reward if you click on them & signup, or purchase something through these links. Using them is entirely optional but it is always appreciated!