У нас вы можете посмотреть бесплатно Learning LangChain: Building AI and LLM Applications with LangChain and LangGraph или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Learning LangChain: Building AI and LLM Applications with LangChain and LangGraph by Mayo Oshin, Nuno Campos Are you ready to move beyond simple prompts and start building real-world, production-ready AI applications? In this video, we explore **“Learning LangChain: Building AI and LLM Applications with LangChain and LangGraph” by Mayo Oshin and Nuno Campos**—a practical, hands-on guide for developers who want to create intelligent, context-aware AI systems. LangChain has quickly become one of the most powerful frameworks for building LLM-powered applications. Used by companies like Zapier, Replit, and Databricks, it enables developers to design agentic workflows, connect models to external tools, and build applications that can reason, retrieve, and act. This book breaks down complex AI concepts into clear, step-by-step explanations, making it ideal for Python and JavaScript developers who are new to AI application development. The authors begin with the fundamentals of large language model (LLM) applications and gradually guide you toward building a fully functional production-ready AI agent. You’ll learn how to implement Retrieval-Augmented Generation (RAG) to improve accuracy by grounding responses in up-to-date external data. The book explains how to structure prompts, manage memory, handle embeddings, and connect vector databases for smarter information retrieval. A major highlight of this book is its deep dive into LangGraph, which enables you to design advanced, multi-step agent workflows. You’ll understand how to build AI systems that can make decisions, use tools, call APIs, and manage complex reasoning chains. The authors also show you how to integrate third-party APIs and external tools, allowing your AI applications to go beyond text generation and perform meaningful tasks. Beyond building, the book emphasizes testing, monitoring, and evaluating AI systems to ensure reliability and performance in production environments. You’ll gain practical strategies for debugging, optimizing, and scaling your AI applications responsibly. Whether you’re an aspiring AI engineer, software developer, or tech enthusiast looking to build context-aware AI systems, this book provides a structured roadmap from beginner concepts to advanced agent architectures. Watch this video to get a complete summary of the key concepts, practical techniques, and real-world insights from “Learning LangChain” — and start building smarter, more powerful AI applications today. #LearningLangChain #LangChain #LangGraph #LLMApps #AIAgents #RetrievalAugmentedGeneration #RAG #GenerativeAI #ArtificialIntelligence #PythonDevelopers #JavaScriptDevelopers #AIDevelopment #LLMDevelopment #PromptEngineering #VectorDatabases #AIEngineering #MachineLearning #OpenAI #AIProjects #TechBooks #AIApplications #AgenticAI #AIFrameworks #LLMEngineering #AIWorkflow #AIArchitecture #BuildWithAI #AIForDevelopers #DataScience #AIInnovation #LangChain #LangGraph #LearningLangChain #LLMApps #AIApplications #GenerativeAI #RAG #RetrievalAugmentedGeneration #AIAgents #AgenticAI #LLMDevelopment #PythonAI #JavaScriptAI #AIEngineering #MachineLearning #AIDevelopment #PromptEngineering #VectorDatabase #Embeddings #APIsIntegration #AIProjects #OpenAI #LLMFramework #AIAutomation #ContextAwareAI #TechBooks #AIForDevelopers #BuildWithAI #ArtificialIntelligence #AIWorkflow #ProductionAI #AIArchitecture