У нас вы можете посмотреть бесплатно CCDev 2 - what you need to think about with MCP или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Kevin McDonnell and Garry Trinder delve into the world of Model Context Protocol (MCP) and its implications for developers. We start with a starter overview of functionality of MCP and why it is important. However, we wanted to get beyond that initial view that is covered elsewhere and look at some of the challenges associated with using MCP and broader considerations that you need to be looking at. The conversation covers the importance of optimizing documentation for language models, governance in MCP usage, and strategies for getting started with MCP and then scaling. Takeaways MCP is a universal approach to context in AI. MCP servers can execute actions beyond API calls. Optimizing documentation for LLMs is essential for effective AI integration. Trust and governance are critical in using MCP servers. MCP can significantly enhance productivity in software development. Building an MCP server can be straightforward and quick. MCP allows for local execution of actions, enhancing flexibility. The future of MCP involves more robust governance and control mechanisms. Organizations should develop a strategy for managing MCP servers. Experimentation with MCP can lead to unexpected benefits and insights.