У нас вы можете посмотреть бесплатно Scikit-Learn for Beginners: Build Your First Machine Learning Model или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Scikit-learn (Sklearn) is one of the most powerful and beginner-friendly machine learning libraries in Python. In this tutorial, Dr. Uohna Thiessen, AI strategist and Udacity instructor, walks viewers through the process of building their first machine learning model using Scikit-learn. This video covers the basics of machine learning, from loading and exploring data to training and evaluating a model. Using the famous Iris dataset, Dr. Thiessen demonstrates how to set up a machine learning workflow in Google Colab with just a few lines of Python code. What This Video Covers: An introduction to Scikit-learn and its capabilities The five key steps in machine learning model development How to load, explore, and split data for training A hands-on walkthrough of building a simple prediction model How to evaluate the model’s performance By following along, viewers will gain a fundamental understanding of machine learning and how to apply Scikit-learn to real-world problems, from customer behavior prediction to recommendation systems. For those looking to dive deeper into machine learning, check out the official Scikit-learn documentation: https://scikit-learn.org/ If you find this tutorial helpful, consider subscribing for more machine learning and AI tutorials. Let us know in the comments what topics you’d like to see next. --- Follow Dr. Uohna Thiessen on LinkedIn: / druohna-datascientist Continue learning Machine Learning at Udacity: https://www.udacity.com/school/artifi... --- Connect with us on social! 🌐 Instagram: / udacity LinkedIn: / udacity Facebook: / udacity X/Twitter: / udacity --- Video Chapters: 00:00 - Introduction to Machine Learning and Scikit-learn 00:45 - What is Machine Learning? 02:00 - Understanding the Machine Learning Workflow 03:00 - Introduction to Google Colab and Python Libraries 04:00 - Loading and Exploring the Iris Dataset 06:30 - Data Splitting: Features and Targets 07:30 - Training a Machine Learning Model with Scikit-learn 09:00 - Evaluating Model Performance 10:20 - Conclusion and Next Steps