У нас вы можете посмотреть бесплатно Intraoperative Gonioscopy & Microscope Settings - Dr. Prasanna Venkatesh Ramesh или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this audiovisual presentation titled "Intraoperative Gonioscopy & Microscope Settings" the essential role of gonioscopy in enhancing the outcomes of minimally invasive glaucoma surgery (MIGS) is covered.[1,2] This exploration begins with a detailed overview of various direct gonioscopes, including the Koeppe Goniolens, Swan Jacob Goniolens, Richardson-Shaffer's Goniolens, Thrope Goniolens, Barkan Goniolens, and Layden Direct Goniolens, and highlights recent advancements such as the iPrism S and Sx, Katena handheld, Katena hands-free, and Volk Surgical Gonio Lens. A comprehensive algorithm encompassing the pre-operative phase (anesthesia selection), intra-operative phase (microscope and head tilting techniques, gonio lens selection, seat and hand positioning, corneal incision, soft shell technique, foot pedal adjustments, and goniolens docking and manipulation), and post-operative phase (goniophotography) is shown. The microscope and head tilting technique involves a temporal approach to the nasal angle, with the patient's head rotated 30-40 degrees nasally and the microscope adjusted temporally by the same degree. This method integrates manual pencil marking and smartphone applications to ensure precise tilting and optimal angle visualization. The presentation also addresses common challenges encountered during direct gonioscopy, such as excessive pressure causing corneal striae, reflections from scratches, collapse of Schlemm’s canal, and managing blood reflux in the anterior chamber, including techniques for clearing the blood field. Furthermore, the importance of simulated training is emphasized, employing detailed angle anatomy within a 3D eyeball framework in an augmented reality environment, with the introduction of an innovative, cost-effective, and portable 4D holographic simulator protected by patent for training purposes.[3]