У нас вы можете посмотреть бесплатно Aaron P. Kaye : The Personalization Paradox или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
👉 Speaker : Aaron P. Kaye : The Personalization Paradox : Welfare Effects of Personalized Recommendations in Two-Sided Digital Markets 00:00 Introduction 00:20 Recommendation systems determine product rankings 01:05 What is a Two-Sided Digital Market 03:15 Introduction 04:35 Exemple : The Elvis Hotel 09:15 Price Competition for Product Rankings 10:10 Co-Ranking of Close Substitutes 10:40 This paper 12:50 Preview of Results 14:40 Contributions 15:05 Outline 15:30 Data and Setting 15:35 Data : Expedia Competition to Personalize Recommendtions 16:35 Ecommerce Platform Design : Recommendations and Feature Empire 17:20 Position Effects and Incentives 17:25 Empirical Evidence of Position Effects 17:35 Slot impacts demand even when recommendations are random 18:25 Empirical Evidence of Position Effects 18:40 Slot is correlated with price and hidden product features 19:10 Empirical Evidence of Position Effects 20:00 Structural Model 20:05 Structural Model Outline 23:00 Structural Model : Demand 23:05 Demand Model 24:10 Demand Model : Model Details 25:15 Demand Estimation Details (Maximum Simulated Likelihood) 26:05 Demand Estimation : Utility, Search Cost, and reservation Utility 27:05 Consumer Choice Model Identification 28:30 Demand Results 28:45 Structural Model : Plateform Recommendations (expedia) 29:00 Model : Platform Two Step "Model of the Model" Approach 30:20 Platform Results - Out of Sample Fit 30:50 Platform Model Sequential Logit Results 30:55 Structural Model : Supply (Hotels) 31:00 Model : Supply Side 32:10 Supply Side Estimation : Two Stage Least Squares 33:05 Supply Side Results 33:30 Personalized Recommendation Systems Training for Counterfactuals 33:40 Recommendations Systems 34:10 Recommendations Systems (Ensemble of LambdaMARTs) 36:10 Counterfactuals 36:15 Counterfactual Setup 36:25 Results 37:35 Personalized recs. With Star-level economies of scale and softy capacity 38:20 Counterfactual Results Continued 39:45 Policy Counterfactual : Price Tuned Recommendations 40:25 Paper Overview 41:20 Conclusion 42:00 Discussion