У нас вы можете посмотреть бесплатно Deep Q-Learning/Deep Q-Network (DQN) Explained | Python Pytorch Deep Reinforcement Learning или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This tutorial contains step by step explanation, code walkthru, and demo of how Deep Q-Learning (DQL) works. We'll use DQL to solve the very simple Gymnasium FrozenLake-v1 Reinforcement Learning environment. We'll cover the differences between Q-Learning vs DQL, the Epsilon-Greedy Policy, the Policy Deep Q-Network (DQN), the Target DQN, and Experience Replay. After this video, you will understand DQL. Want more videos like this? Support me here: https://www.buymeacoffee.com/johnnycode GitHub Repo: https://github.com/johnnycode8/gym_so... Part 2 - Add Convolution Layers to DQN: • Convolutional Neural Network (CNN) in... Reinforcement Learning Playlist: • Gymnasium (Deep) Reinforcement Learni... Resources mentioned in video: How to Solve FrozenLake-v1 with Q-Learning: • Q-Learning Tutorial 1: Train Gymnasiu... Need help installing the Gymnasium library? • Install Gymnasium (OpenAI Gym) on Win... Solve Neural Network in Python and by hand: • How to Calculate Loss, Backpropagatio... 00:00 Video Content 01:09 Frozen Lake Environment 02:16 Why Reinforcement Learning? 03:12 Epsilon-Greedy Policy 03:55 Q-Table vs Deep Q-Network 06:51 Training the Q-Table 10:10 Training the Deep Q-Network 14:49 Experience Replay 16:03 Deep Q-Learning Code Walkthru 29:49 Run Training Code & Demo