У нас вы можете посмотреть бесплатно 3D Point Cloud Course for Beginners in 99-minute (CloudCompare, Python, Potree, Segmentation) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Get 3D GeoAI System → https://learngeodata.eu/geo-ai-sprint... Get my Book → https://amzn.to/49d1rW2 ⏱️ TIMESTAMPS: [00:00] Course introduction, 8 key topics, and warning about sound quality [02:00] Overview of the capture process, automation, and pre-processing pipeline [04:30] Noise removal demonstration using noisy Gaussian Splatting point clouds [07:00] Filtering techniques: Statistical Outlay Filter and Octree connected component filtering [12:30] Computing geometric features, including omnivariance, planarity, and linearity [17:00] Improving qualitative visualization using PCV (Point Cloud Visibility/Occlusion Test) [22:00] Point Cloud Registration: Global registration challenges using RANSAC [27:30] Local registration mechanism: Iterative Closest Point (ICP) alignment [30:00] Segmentation concepts: Clustering, over-segmentation, and under-segmentation [34:30] Leveraging features like verticality and planarity for segmentation [40:00] Using RANSAC (RANdom SAmple Consensus) for planar shape detection [45:00] Classification umbrella, part segmentation, and manual labeling for data set preparation [50:00] Structuration and standard data formats: ASCII, Binary, and Hybrid (LAS/LAZ, PLY) [55:00] Handling massive point clouds using Potree Viewer and Converter [60:00] Application layer: Using Potree for measurements and section cuts (cross-sections) [65:00] Building automated workflows: Using Python's subprocess to run Cloud Compare CLI [75:00] Q&A: Automating registration point selection using shape extraction mechanisms (RANSAC) [81:00] Q&A: Segmenting based on normal vectors/true north angle [86:00] Q&A: Achieving high-quality classification using 3D machine learning and labeling efforts [91:00] Q&A: Converting 2D labeled data to 3D classification (Semantic Photogrammetry) [95:00] Course summary and transition to the 3D Machine Learning boot camp 3D point cloud course, outlining eight key topics that are covered, including the fundamentals and hands-on demonstrations. I detail processes such as 3D region splitting, feature computation, and point cloud registration, emphasizing the use of both classical and advanced deep learning methods. A significant portion of the discussion focuses on pre-processing techniques like noise removal and filtering, and how these steps are crucial for robust data pipelines. Furthermore, the course explores segmentation (clustering), distinguishing it from semantic classification, and introduces tools such as CloudCompare and Potree for handling and visualizing massive datasets, and demonstrates the automation of workflows through Python scripting. WHO AM I? If we haven’t yet before - Hey 👋 I’m Florent, a professor-turned-entrepreneur, and I’ve somehow become one of the most-followed 3D experts. Through my videos and writing, I share evidence-based strategies and tools to help you become a better coder and 3D innovator.