У нас вы можете посмотреть бесплатно Ex-3.1 Question no. 2&3 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this chapter, you have studied the following points: 1. A pair of linear equations in two variables can be represented, and solved, by the: (i) graphical method (ii) algebraic method 2. Graphical Method : The graph of a pair of linear equations in two variables is represented by two lines. (i) If the lines intersect at a point, then that point gives the unique solution of the two equations. In this case, the pair of equations is consistent. (ii) If the lines coincide, then there are infinitely many solutions — each point on the line being a solution. In this case, the pair of equations is dependent (consistent). (iii) If the lines are parallel, then the pair of equations has no solution. In this case, the pair of equations is inconsistent. 3. Algebraic Methods : We have discussed the following methods for finding the solution(s) of a pair of linear equations : (i) Substitution Method (ii) Elimination Method 4. If a pair of linear equations is given by a1 x + b1 y + c1 = 0 and a2 x + b2 y + c2 = 0, then the following situations can arise : (i) 1 1 2 1 a b a b : In this case, the pair of linear equations is consistent. (ii) 111 222 abc abc : In this case, the pair of linear equations is inconsistent. (iii) 111 222 abc abc : In this case, the pair of linear equations is dependent and consistent. 5. There are several situations which can be mathematically represented by two equations that are not linear to start with. But we alter them so that they are reduced to a pair of linear equations.