У нас вы можете посмотреть бесплатно Automatic Differentiation for Solid Mechanics in Julia | Andrea Vigliotti | JuliaCon 2022 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Automatic Differentiation (AD) is widely applied in many different fields of computer science and engineering to accurately evaluate derivatives of functions expressed in a computer programming language. In this talk we illustrate the use of AD for the solution of Finite Elements (FE) problems with special emphasis on solid mechanics. For more info on the Julia Programming Language, follow us on Twitter: / julialanguage and consider sponsoring us on GitHub: https://github.com/sponsors/JuliaLang Resources AD4SM.jl package repository: https://github.com/avigliotti/AD4SM.jl Slides of presentation and additional examples: https://github.com/avigliotti/AD4SM_e... Andrea Vigliotti & Ferdinando Auricchio, "Automatic Differentiation for Solid Mechanics". Arch Computat Methods Eng 28, 875–895 (2021): https://doi.org/10.1007/s11831-019-09... Contents 0:10 Opening and introduction 0:30 Why AD for solid Mechanics? 1:50 One example, the rod element 2:50 Why Julia? 3:24 AD4SM.jl 4:00 How a second order forward mode AD System works 6:46 Examples of simulation results S/O to https://github.com/avigliotti for the video timestamps! Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/JuliaCommunity/You... Interested in improving the auto generated captions? Get involved here: https://github.com/JuliaCommunity/You...