У нас вы можете посмотреть бесплатно Is it Data Product or Data as a Product? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Listen as SAP data experts, Gebhard Roos, Maria Villar, and Tina Rosario discuss the concepts that fall under the umbrella of “Data as a Product.” They will converse on the nuances and value of various approaches to data sharing, including democratization, monetization, and data marketplaces, with both inside and outside views. Host: Corrie Birkeness Speakers: Gebhard Roos – Product Manager for SAP Datasphere Data Marketplace Maria Villar – Head of North America Data Strategy and Transformation Tina Rosario – Chief Data Officer, SAP Europe Important Links: SAP solutions for Data & Analytics: https://bit.ly/3IDy9kS Blog on SAP Datasphere Marketplace: https://bit.ly/4d39Fzq SAP Business Network: https://bit.ly/3JmF56p SAP Sustainability Data Exchange: https://bit.ly/3Q3GeU0 Key Topics of Discussion: Distinguishing Data Product vs. Data as a Product: Exploring the operational model and overarching principles that define these concepts. Characteristics of Data Products: Delving into the transparency, alignment with consumer needs, and governance constraints that distinguish data products. Role of Data Marketplaces: Understanding the significance of data marketplaces in facilitating internal and external data exchange, monetization, and collaboration. Models of Data Sharing: Exploring various models of data sharing, including public domain data, commercial data sharing, and indirect monetization, both internally and externally. Organizational Challenges: Addressing the organizational buy-in, education, and mindset shift required to prioritize consumer needs and navigate the complexities of data product implementation. Technical Challenges: Discussing the technical considerations and architectural models necessary for effective data product creation and management. Transparency and Trustworthiness: Highlighting the importance of transparency, trustworthiness, and consumer-centric design in building successful data products and marketplaces.