У нас вы можете посмотреть бесплатно Fluorescence and thermal images for nanomedicine: From I to IV Biological Window или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Resumo: In recent years, there has been an increasing interest in luminescent nanoparticles as biocompatible optical probes for diagnostic, therapy and fluorescent probes. Special attention has been given to the use of nanoparticles as nanothermometers because the temperature is a fundamental parameter in a variety of areas including electronic devices, engineering, biology, and so on. In biomedicine, for example, the temperature is one of the most critical parameters affecting the dynamics of living specimens due to the strong temperature dependence of cellular dynamics, since abnormal temperatures could induce irreversible effects. Furthermore, small temperature anomalies could indicate many diseases or health dysfunctions such as tumors, inflammation, real-time temperature control in hyperthermia processes, so on, and because of this, the local temperature monitoring can be used as an effective early detection procedure. Here, I will present an overview of the recent results on fluorescence and thermal images and applications in biological systems going from ex vive to in vivo experiments [1-8]. Much has been done so far and much has yet to be done. 1. W.S. Silva et al., “Nd3+ doped TiO2 nanocrystals as self-referenced optical nanothermometer operating within the biological windows,” Sensors and Actuators A 317 (2021) 112445. 2. Y. Shen et. al., “Ag2S Nanoheaters with Multiparameter Sensing for Reliable Thermal Feedback during In Vivo Tumor Therapy.” Adv. Funct. Mater. 30 (2020) 2002730. 3. H. D. A. Santos et. al., “Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging,” Nature Communications 11 (2020) 2933. 4. E. C. Ximendes et. al., “Thulium doped LaF3 for nanothermometry operating over 1000 nm,” Nanoscale 11 (2019) 8864-8869. 5. H. D. A. Santos et al., “In Vivo Early Tumor Detection and Diagnosis by Infrared Luminescence Transient Nanothermometry”, Advanced Functional Materials, 28 (2018) 1803924. 6. E.C. Ximendes et al., “In Vivo Subcutaneous Thermal Video Recording by Supersensitive Infrared Nanothermometers”, Adv. Funct. Mater., 27 (2017) 1702249. 7. L. Labrador-Paez et al., “Core-shell rare-earth-doped nanostructures in biomedicine”, Nanoscale, 10 (2018) 12935-12956. 8. E.C. Ximendes et al., “In Vivo Ischemia Detection by Luminescent Nanothermometers”, Adv. Healthcare Mater., 6 (2017) 1601195.