У нас вы можете посмотреть бесплатно Video Frame Interpolation, Video Restoration & Multi-Shot Video Understanding | Multimodal Weekly 77 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In the 77th session of Multimodal Weekly, we had three exciting presentations on video frame interpolation, video restoration, and multi-shot video understanding. ✅ Zujin Guo presented Generalizable Implicit Motion Modeling (GIMM), a novel and effective approach to motion modeling for Video Frame Interpolation. Connect with Zujin: https://gseancdat.github.io/ GIMM-VFI: https://gseancdat.github.io/projects/... ✅ Kamran Janjua presented Turtle, a method to learn the truncated causal history model for efficient and high-performing video restoration. Connect with Kamran: https://kjanjua26.github.io/ Turtle: https://kjanjua26.github.io/turtle/ ✅ Mingfei Han presented Shot2Story, a new multi-shot video understanding benchmark dataset with detailed shot-level captions, comprehensive video summaries and question-answering pairs. Connect with Mingfei: https://mingfei.info/ Shot2Story: https://mingfei.info/shot2story/ Timestamps: 00:07 Introduction 03:28 Zujin starts 03:47 Video Frame Interpolation 04:05 Method - Preliminary 04:58 Motivation 06:03 Method - GIMM 08:36 Method - GIMM-VFI 09:36 Motion Modeling Evaluation 11:43 Ablation Studies 13:08 Interpolation Evaluation 13:57 Gallery 14:19 Perceptually Enhanced GIMM-VFI and Qualitative Improvement 14:54 Find GIMM-VFI on GitHub 15:15 Q&A with Zujin 19:55 Kamran starts 21:07 Learning, Processing Streaming Videos and Histories 23:00 Truncated Causal History Model 29:24 Is Causal History Model necessary? 30:40 Two Views of Turtle 32:15 Distinct Features 33:22 Some Selected Results 36:30 Q&A with Kamran 48:30 Mingfei starts 48:45 Video clip - What does the video convey? 49:10 Video clip - Understand the multi-short video clip 50:40 Shot2Story 52:30 Data distribution of Shot2Story (visual captions, narration captions, and multi-short video QA pairs) 55:34 Human involved and rectified text annotations 57:57 Baseline 59:10 Benchmark performance in video shot captioning, multi-shot video summarization, and multi-shot video question answering tasks 01:01:54 Zero-shot VQA with video summaries generated by the model 01:03:40 Q&A with Mingfei Join the Multimodal Minds community to receive an invite for future webinars: / discord