• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

MedAI Session 25: Training medical image segmentation models with less labeled data | Sarah Hooper скачать в хорошем качестве

MedAI Session 25: Training medical image segmentation models with less labeled data | Sarah Hooper 3 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
MedAI Session 25: Training medical image segmentation models with less labeled data | Sarah Hooper
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: MedAI Session 25: Training medical image segmentation models with less labeled data | Sarah Hooper в качестве 4k

У нас вы можете посмотреть бесплатно MedAI Session 25: Training medical image segmentation models with less labeled data | Sarah Hooper или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон MedAI Session 25: Training medical image segmentation models with less labeled data | Sarah Hooper в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



MedAI Session 25: Training medical image segmentation models with less labeled data | Sarah Hooper

Title: Training medical image segmentation models with less labeled data Speaker: Sarah Hooper Abstract: Segmentation is a powerful tool for quantitative analysis of medical images. Because manual segmentation can be tedious, be time consuming, and have high inter-observer variability, neural networks (NNs) are an appealing solution for automating the segmentation process. However, most approaches to training segmentation NNs rely on large, labeled training datasets that are costly to curate. In this work, we present a general semi-supervised method for training segmentation networks that reduces the required amount of labeled data. Instead, we rely on a small set of labeled data and a large set of unlabeled data for training. We evaluate our method on four cardiac magnetic resonance (CMR) segmentation targets and show that by using only 100 labeled training image slices---up to a 99.4% reduction of labeled data---the proposed model achieves within 1.10% of the Dice coefficient achieved by a network trained with over 16,000 labeled image slices. We use the segmentations predicted by our method to derive cardiac functional biomarkers and find strong agreement to expert measurements of predicted ejection fraction, end diastolic volume, end systolic volume, stroke volume, or left ventricular mass compared an expert annotator. Speaker Bio: Sarah Hooper is a PhD candidate at Stanford University, where she works with Christopher Ré and Curtis Langlotz. She is broadly interested in applying machine learning to meet needs in healthcare, with a particular interest in applications that make quality healthcare more accessible. Sarah received her B.S. in Electrical Engineering at Rice University in 2017 and her M.S. in Electrical Engineering at Stanford University in 2020. ------ The MedAI Group Exchange Sessions are a platform where we can critically examine key topics in AI and medicine, generate fresh ideas and discussion around their intersection and most importantly, learn from each other. We will be having weekly sessions where invited speakers will give a talk presenting their work followed by an interactive discussion and Q&A. Our sessions are held every Thursday from 1pm-2pm PST. To get notifications about upcoming sessions, please join our mailing list: https://mailman.stanford.edu/mailman/... For more details about MedAI, check out our website: https://medai.stanford.edu. You can follow us on Twitter @MedaiStanford Organized by members of the Rubin Lab (http://rubinlab.stanford.edu) Nandita Bhaskhar (https://www.stanford.edu/~nanbhas) Siyi Tang (https://siyitang.me)

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5