У нас вы можете посмотреть бесплатно The Parallel AI Research Workflow That Ships Production PDFs Fast или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
I used 6 AI agents running in parallel to research Gartner, McKinsey, MIT, and Reddit—then turned it into a production-ready lead magnet PDF with Gamma App in 30 minutes. Full deployment to Vercel with working lead capture, email nurturing via Zapier, and real debugging included. No templates. Just MCP servers, Cursor AI, and a workflow that actually works. 🎓 What You'll Learn ✅ Parallel AI Research → Running 6 models simultaneously (Composer, Sonnet, GPT, DeepSeek) ✅ MCP Server Deep Dive → REF, Reddit, FireCrawl pulling Gartner, McKinsey, MIT, Forrester sources ✅ Sequential Thinking Chains → Consolidating 60-step outputs into master document ✅ First Principles Debugging → Real 500 error fix on Vercel ✅ Lead Capture Pipeline → Gamma PDFs + API routes + Zapier webhooks 📚 Research Sources (AI-Pulled) 📊 Gartner AI readiness research 📈 McKinsey enterprise AI adoption studies 🎓 MIT Sloan organizational AI failures 📉 Forrester predictive analytics gaps 💬 Reddit (r/MachineLearning, r/MLOps) practitioner pain points 📰 RAND Corporation implementation cases 💼 S&P Global Market Intelligence benchmarks Key Stats: 95% of AI pilots fail 70% fail due to org readiness, not tech Real Reddit infrastructure gaps exposed 🛠️ Tools Stack Development: Cursor AI → Parallel agents, worktrees, Composer Next.js → Responsive portfolio site Vercel → Production deployment Git → Feature branches, staging, push Research & Automation: MCP Servers (Anthropic) → REF, Reddit, FireCrawl Perplexity → Initial scoping Sequential Thinking → Chain consolidation Content Creation: Gamma App → AI PDFs with citations Zapier → Lead capture webhooks AI Models: Claude Sonnet (thorough, token-heavy) Composer (Cursor's fastest) GPT-5 (parallel run) DeepSeek (free, loop error) 🔥 Why This Works (Viral Framework) ✅ Mini-skill → 30-min workflow ✅ Before-after → Research → PDF ✅ Mistake-fixing → Live 500 error debug ✅ Copy-this → Exact configs shown ✅ Behind-scenes → 93K token cost reveal ✅ Industry-validated → Gartner/MIT/Reddit ⏱️ Timestamps 0:00 - Data scientists → Systems architects (2025) 2:15 - Portfolio demo (Next.js, no templates) 4:30 - Lead magnet: AI Readiness Checklist 6:45 - Perplexity research (Gartner + Reddit) 9:20 - MCP Servers = "Master key to AI" 12:00 - 6 agents parallel setup 15:30 - REF MCP → Official docs 18:45 - Reddit MCP → Pain points 21:00 - FireCrawl MCP → Article scraping 24:10 - Token usage (93K, cost comparison) 26:30 - Sequential thinking (60 steps) 29:00 - Gamma App → PDF in minutes 33:15 - Git → Vercel deployment 36:40 - LIVE DEBUG: 500 error fix 40:20 - Lead API + Zapier nurturing 42:50 - Production site + PDF download 45:00 - Recap: MCP + agents + deployment 🌐 Related Portfolio: brandontoddjackson.com Projects: www.GodlyDeeds.ai, www.aidemystified.app, ebook.aidemystified.app ✨ Production-Grade, Not Clickbait ✅ Anthropic's MCP (industry standard) ✅ Real sources (Gartner, McKinsey, MIT) ✅ Reddit-validated pain points ✅ Live 500 error → fixed in production ✅ Token costs analyzed (Composer vs Sonnet) No templates. Real workflows. December 2025. #CursorAI #MCPServers #AIAutomation #NextJS #Vercel #ParallelProcessing #AIResearch #LeadGeneration #SystemsArchitect #DataScience2025