У нас вы можете посмотреть бесплатно Hyperparameter Tuning in Machine Learning Model using Optuna или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, you’ll learn how to perform hyperparameter optimization using Optuna—a powerful open-source Python framework designed for automating the search for optimal parameters in machine learning models. This hands-on tutorial walks you through every step of using Optuna to tune a Random Forest Classifier on the classic Iris dataset, covering both the practical coding aspects and the underlying concepts. What You’ll Learn: 1.Introduction to Optuna Get to know what Optuna is, its key features, and why it’s one of the most efficient tools for hyperparameter optimization. 2.Dataset Preparation Learn how to import essential libraries, load the Iris dataset, and split the data for training and testing. 3.Defining the Objective Function Understand how to create an objective function that tells Optuna how to evaluate different combinations of hyperparameters for the Random Forest model. 4.Running the Optuna Optimization Step-by-step guidance on setting up an Optuna study, configuring the number of trials, and running the optimization process. 5.Retrieving and Interpreting Results See how to access the best hyperparameters found by Optuna and understand the evaluation metrics and output details. 6.Adaptability Tips Suggestions for modifying the code to work with other datasets, models, or additional hyperparameters. Who is this video for? -Aspiring data scientists and machine learning practitioners interested in efficient model tuning -Anyone looking to automate and streamline their machine learning workflow -Beginners who want a clear, practical introduction to Optuna in Python #Optuna #HyperparameterTuning #machinelearning #python #randomforest #datascience