У нас вы можете посмотреть бесплатно All Machine Learning Concepts Explained in 22 Minutes или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
All Basic Machine Learning Terms Explained in 22 Minutes ######################################### I just started my own Patreon, in case you want to support! Patreon Link: / infinitecodes ######################################### To get you out of your confusion with all the Machine Learning Vocabulary, here an overview of all basic terms you will encounter as you start your Journey in Machine Learning and Data Science. Also Watch: All Machine Learning algorithms explained in 17 min • All Machine Learning algorithms expla... Learn Machine Learning Like a GENIUS and Not Waste Time • Learn Machine Learning Like a GENIUS ... The Math that make Machine Learning easy (and how you can learn it) • How Math makes Machine Learning easy ... 15 Machine Learning Lessons I Wish I Knew Earlier • 15 Machine Learning Lessons I Wish I ... Machine Learning Playlist: • How Math makes Machine Learning easy ... ================== Timestamps ================ 00:04 - Artificial Intelligence (AI) 00:37 - Machine Learning 01:30 - Algorithm 02:06 - Data 02:48 - Model 03:30 - Model fitting 03:44 - Training Data 04:17 - Test Data 04:54 - Supervised Learning 05:24 - Unsupervised Learning 06:01 - Reinforcement Learning 07:05 - Feature (Input, Independent Variable, Predictor) 07:45 - Feature engineering 08:15 - Feature Scaling (Normalization, Standardization) 08:48 - Dimensionality 09:34 - Target (Output, Label, Dependent Variable) 09:59 - Instance (Example, Observation, Sample) 10:32 - Label (class, target value) 11:16 - Model complexity 12:15 - Bias & Variance 13:23 - Bias Variance Tradeoff 14:11 - Noise 14:30 - Overfitting & Underfitting 15:20 - Validation & Cross Validation 16:20 - Regularization 16:40 - Batch, Epoch, Iteration 17:40 - Parameter 18:22 - Hyperparameter 18:50 - Cost Function (Loss Function, Objective Function) 19:39 - Gradient Descent 20:49 - Learning Rate 21:28 - Evaluation