У нас вы можете посмотреть бесплатно Biomateriales || Bioglass-Hidrogel; el futuro de la regeneración de tejido или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
La regeneración de tejido es una tecnología con visto bueno para solucionar el problema que hay cuando un paciente necesita un trasplante de órgano y la lista en la que se encuentra ha sido posicionado muy lejano a este. Hasta ahora lo más innovador que se ha implementado en pacientes es el uso de injertos, una especie de andamios que favorecen el crecimiento y proliferación de células de una determinada área. No olvides compartir y darle like y suscribiendote Referencias donde puedes encontrar mucho más si te ha interesado: Alhashimi, R. A. (2017). Bioactivity, cytocompatibility and thermal properties of experimental, Bioglass-reinforced composites as potential root-canal filling materials. Journal of the Mechanical Behavior of Biomedical Materials, 69, 355-361. Bachar, A. (2019). Synthesis and Characterization of Doped Bioactive Glasses. In G. Kaur, Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses (pp. 1, 69-123). Francia: Woodhead Publishing. Bhaskar, P. (2020). Cooling rate effects on the structure of 45S5 bioglass: Insights from experiments and simulations. Journal of Non-Crystalline Solids, 534, 119952, 1-12. El-Kady, A. (2020). Controlled delivery of therapeutic ions and antibiotic drug of novel alginateagarose matrix incorporating selenium-modified borosilicate glass designed for chronic wound healing. Journal of Non Crystalline Solids, 534, 119889, 1-21. Fernando, I. S. (2019). Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chemical Engineering Journal, 1, 123823, 1-55. Grøndahl, L. (2020). Applications of alginate biopolymer in drug delivery. In C. P. Sharma, Biointegration of Medical Implant Materials (Second Edition (pp. 1, 375-403). Australia: Woodhead Publishing. Hasan, M. L. (2019). In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. Materials Science & Engineering C, 103, 109775, 1-12. Huang, J. (2017). Design and Development of Ceramics and Glasses. In J. M. Ajaykumar Vishwakarma, Biology and Engineering of Stem Cell Niches (pp. 1, 315-329). Londres: Academic Press. Hussain, R. (2019). 3D Scaffolds of Borate Glass and Their Drug Delivery Applications. In G. Kaur, Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses (pp. 1, 153-173). Malasya: Woodhead Publishing. Jones, J. R. (2015). Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 23, 53-82. Killion, J. A. (2013). Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation. Materials Science and Engineering C, 33, 4203-4212. Kolan, K. C. (2020). Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells. Bioprinting , 18, e00075, 1-21. Krishnana, V. (2019). Angiogenic Attributes of Multifaceted Bioactive Glass: Its Therapeutic Potential on Soft Tissues and Drug Delivery Utilization. In G. Kaur, Biomedical,Therapeutic and Clinical Applications of Bioactive Glasses (pp. 1: 331-353). India:Woodhead Publishing. Neves, S. C. (2019). Leveling Up Hydrogels: Hybrid Systems in Tissue Engineering. Trends in Biotechnology, 38(3): 292-315. Biomateriales 38 Qureshi, D. (2019). Environment sensitive hydrogels for drug delivery applications. European Polymer Journal, 120, 109220, 1-39. Rocton, N. (2019). Fine analysis of interaction mechanism of bioactive glass surface after soaking in SBF solution: AFM and ICP-OES investigations. Applied Surface Science, 505, 144076, 1-7. Rodrigues, C. (2019). Bioglass 45S5: Structural characterization of short range order and analysis of biocompatibility with adipose-derived mesenchymal stromal cells in vitro. Materials Science & Engineering C, 103, 109781, 1-13. Unagolla, J. M. (2020). Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 18, 100479, 1-22. Venkatesan, J. (2014). Alginate composites for bone tissue engineering: A. International Journal of Biological Macromolecules, 72, 269-281. Zhou, H. (2019). Injectable biomaterials for translational medicine. Materials Today, 28, 81-97.