У нас вы можете посмотреть бесплатно Fourier tails for Boolean functions and their applications - Avishay Tal или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Computer Science/Discrete Mathematics Seminar II Topic: Fourier tails for Boolean functions and their applications Speaker: Avishay Tal Affiliation: Member, School of Mathematics Date: Tuesday, May 3 The discrete Fourier transform is a widely used tool in the analysis of Boolean functions. One can view the Fourier transform of a Boolean function as a distribution over sets. The Fourier-tail at level k is the probability of sampling a set S of size at least k. We consider Boolean functions whose Fourier-tails have a threshold behavior. That is, above some level t, the tails decrease exponentially fast. Several weak classes of Boolean functions have exponentially small Fourier tails. We discuss how small Fourier tails are equivalent to moment-bounds and to shrinkage under random restrictions. We plan to mention applications to learning small-depth circuits and to shrinkage of de-Morgan formulas. If time permits, we will prove that small-sensitivity Boolean functions have exponentially small Fourier-tails. For more videos, visit http://video.ias.edu