У нас вы можете посмотреть бесплатно Why YOLO26 Is Perfect for Edge AI (Jetson, Mobile, Embedded) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we take a deep dive into YOLO26, the latest object detection model released by Ultralytics. Recent YOLO models achieved excellent accuracy, but they became increasingly difficult to deploy on edge devices and low-power hardware. YOLO26 directly addresses this problem by focusing on optimization, efficiency, and real-world deployment, instead of only pushing benchmark numbers. We’ll cover: Why YOLO26 is specifically optimized for edge deployment The motivation behind moving beyond accuracy-only improvements End-to-End NMS-Free Inference and why removing NMS matters Anchor-free detection and how it simplifies training Training-level improvements: ProgLoss (Progressive Loss Balancing) STAL (Small-Target-Aware Label Assignment) The new MuSGD optimizer inspired by LLM training Why YOLO26 removes Distribution Focal Loss (DFL) and how this improves deployment How these changes lead to: Faster inference Lower memory usage Easier export to ONNX and TensorRT Stable runtime on edge devices At the end of the video, I’ll show you how to run YOLO26 using pretrained models on Local machine 📸 Follow me on Instagram: @codewithaarohi 🔗 / codewithaarohi 📧 You can also reach me at: aarohisingla1987@gmail.com