У нас вы можете посмотреть бесплатно Deep Learning and AI in Neuro-Ophthalmology: What is the Clinical Utility? | Neurology Grand Rounds или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Recorded live on January 17th, 2025 In this Neurology Grand Rounds Resident research presentation, Dr. Heather Moss, professor of neurology and ophthalmology at Stanford Medicine, delivers a compelling talk on the application of artificial intelligence (AI) and deep learning in neuro-ophthalmology. She highlights the evolving role of AI in clinical decision-making, particularly in diagnosing and managing optic nerve disorders. Dr. Moss discusses AI as a predictive model, including deep learning and machine learning, functions similarly to traditional medical models like regression analyses or diagnostic scores. Dr. Moss also reviews the Bonsai model for detecting papilledema via fundus photos, demonstrating high sensitivity and specificity. Dr. Moss expresses that while promising, the implementation of AI-based diagnostics requires careful consideration of its clinical impact and generalizability. Dr. Moss addresses concerns around bias, fairness, and the need for validation in diverse patient populations and stresses that AI models must be continually tested and refined to avoid disparities in diagnostic accuracy across different demographics. Dr. Moss concludes by advocating for AI as a tool to enhance—not replace—clinical decision-making and underscores the need for rigorous validation, fairness, and structured integration into healthcare systems to ensure AI-driven advancements improve patient care and provider efficiency. Claim CE credit at: https://stanford.cloud-cme.com/course... Learning Objectives: 1. Discuss AI as a predictive model, including deep learning and machine learning, and functions similar to traditional medical models. 2. Review the Bonsai model for detecting papilledema via fundus photos. 3. Identify the ethical considerations of AI in medicine, including patient autonomy, privacy, and maintaining clinical oversight. Mitigation of Relevant Financial Relationships Stanford Medicine adheres to the Standards for Integrity and Independence in Accredited Continuing Education. For full disclosure information, please visit https://stanford.cloud-cme.com/course...