• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

How AI Actually Works скачать в хорошем качестве

How AI Actually Works 4 недели назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How AI Actually Works
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: How AI Actually Works в качестве 4k

У нас вы можете посмотреть бесплатно How AI Actually Works или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон How AI Actually Works в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



How AI Actually Works

A Large Language Model (LLM) is a deep neural network designed to process, understand, and generate human language by predicting the next token in a sequence. The term "large" refers to the massive scale of data—billions to trillions of tokens—and the number of parameters, which are learnable weights that store linguistic patterns. For example, GPT-3 possesses approximately 175 billion parameters, while GPT-4 is estimated to exceed one trillion. The Transformer Engine The technical foundation of modern LLMs is the Transformer architecture, which replaced older sequential models with attention mechanisms that allow for parallel computation across entire sequences. Because Transformers process all input tokens at once, they lack an inherent sense of order. To solve this, positional encoding is used to inject information about word sequence into the model. This is achieved using sine and cosine functions of varying frequencies, creating unique, position-dependent vectors that allow the model to distinguish between "the cat sat on the mat" and "the mat sat on the cat". The core of the Transformer's power lies in self-attention. Each token forms Query (Q), Key (K), and Value (V) vectors to attend selectively to other tokens, learning contextual relevance—such as realizing that the word "it" in a sentence refers to a specific noun mentioned earlier. Multi-head attention allows the model to capture multiple linguistic aspects—like syntax, semantics, and emotion—simultaneously. Following the attention layer, tokens pass through a Feed-Forward Network (FFN), which operates on each token independently to add nonlinear abstraction and deeper feature learning. To ensure stability when stacking dozens or hundreds of these layers, the architecture uses residual connections and layer normalization to prevent gradient collapse. Data Representation: Tokens and Embeddings Before a model can process text, the data is broken down into tokens, which are the discrete building blocks of language, such as words or subwords. These tokens are then mapped to embeddings—numerical vectors that capture semantic meaning and allow machines to handle language through mathematical interrelations. Prompt Engineering and Control Prompt Engineering is the art of crafting instructions to obtain precise and consistent results from an LLM. Several taxonomies define how we interact with these models: • Zero-Shot Prompting: Asking the model to perform a task without any examples. • Few-Shot Prompting: Providing a few input-output examples to help the model infer a pattern. • Chain-of-Thought (CoT): Encouraging the model to reason step-by-step, which significantly improves accuracy in complex logic problems. • Tree-of-Thought (ToT): Allowing the model to explore multiple reasoning paths simultaneously. Advanced control also involves semantic anchoring, where a developer specifies a role or persona (e.g., "You are a cybersecurity expert") to steer the model’s tone and domain focus. AI as a Service (AIaaS) Most modern integration of AI occurs via APIs (Application Programming Interfaces), a model known as AI as a Service. This allows developers to "plug in" intelligence—such as text generation from OpenAI’s GPT or vision capabilities from Google Cloud—without the massive cost or expertise required to train models from scratch. This approach democratizes AI, allowing even small teams to create intelligent applications quickly and securely. Operational Constraints and Parameters Despite their power, LLMs have specific limitations and control mechanisms: • Context Window: This is the maximum amount of text a model can process at once. While early models were limited to 512 tokens, modern models like GPT-4 Turbo can handle 128,000 tokens, and Gemini 1.5 Pro can exceed 1,000,000. • Hallucination: This occurs when a model generates factually incorrect or fabricated information that appears plausible. It is caused by the model's nature as a probability-based next-word predictor rather than a factual database. • Temperature: This hyperparameter acts as a "creativity knob". A low temperature (0.0–0.3) makes the output deterministic and focused, ideal for factual queries, while a high temperature (0.8–1.2+) encourages randomness and diverse, creative responses. -------------------------------------------------------------------------------- The Master Storyteller Analogy: According to the sources, an LLM is like a master storyteller who has read every book ever written. The Transformer is their focus system, helping them decide which parts of their vast knowledge are relevant to your current question, while the parameters are their finely-tuned instincts that allow them to predict how a story should naturally continue. Just as a storyteller uses LEGO-like tokens to build a narrative, the model assembles linguistic "bricks" into a coherent structure.

Comments
  • Mastering Prompt Engineering: From Zero-Shot to Advanced Reasoning (ReAct, CoT & Best Practices) 3 недели назад
    Mastering Prompt Engineering: From Zero-Shot to Advanced Reasoning (ReAct, CoT & Best Practices)
    Опубликовано: 3 недели назад
  • Inventions So Advanced They Feel Like They’re From 2050 6 часов назад
    Inventions So Advanced They Feel Like They’re From 2050
    Опубликовано: 6 часов назад
  • The Dangerous Evolution of AI Hacking 8 дней назад
    The Dangerous Evolution of AI Hacking
    Опубликовано: 8 дней назад
  • Клодбот вот-вот ВСЁ РАЗРУШИТ 7 дней назад
    Клодбот вот-вот ВСЁ РАЗРУШИТ
    Опубликовано: 7 дней назад
  • 10 FREE Browsers That Provide You Dark Web Level Security 2 часа назад
    10 FREE Browsers That Provide You Dark Web Level Security
    Опубликовано: 2 часа назад
  • First Biomimetic AI Robot From China Looks Shockingly Human 3 дня назад
    First Biomimetic AI Robot From China Looks Shockingly Human
    Опубликовано: 3 дня назад
  • How The Fridge Destroyed One of the World’s Largest Monopolies 5 дней назад
    How The Fridge Destroyed One of the World’s Largest Monopolies
    Опубликовано: 5 дней назад
  • Искусственный интеллект вышел из-под контроля (это безумие) 7 дней назад
    Искусственный интеллект вышел из-под контроля (это безумие)
    Опубликовано: 7 дней назад
  • First principles matter more than ever 2 дня назад
    First principles matter more than ever
    Опубликовано: 2 дня назад
  • We Need To Talk About AI... 6 дней назад
    We Need To Talk About AI...
    Опубликовано: 6 дней назад
  • 🧠 Сознание ИИ: граница «делать» и «быть» 4 недели назад
    🧠 Сознание ИИ: граница «делать» и «быть»
    Опубликовано: 4 недели назад
  • Zabrali im dom i gospodarstwo. „Wyrzucili nas na mróz” 7 часов назад
    Zabrali im dom i gospodarstwo. „Wyrzucili nas na mróz”
    Опубликовано: 7 часов назад
  • Ceny peletu szokują, jeśli w ogóle jest... 7 часов назад
    Ceny peletu szokują, jeśli w ogóle jest...
    Опубликовано: 7 часов назад
  • Люди От 1 До 100 Лет Участвуют В Гонке За $250,000! 1 день назад
    Люди От 1 До 100 Лет Участвуют В Гонке За $250,000!
    Опубликовано: 1 день назад
  • Wyniki badań DNA, o których się nie mówi. Wielka zagadka Słowian została rozwiązana? 10 часов назад
    Wyniki badań DNA, o których się nie mówi. Wielka zagadka Słowian została rozwiązana?
    Опубликовано: 10 часов назад
  • Biały Ptak Nad Domem 🕊️ Ta piosenka sprawia, że cała sala wstaje i tańczy do rana 1 день назад
    Biały Ptak Nad Domem 🕊️ Ta piosenka sprawia, że cała sala wstaje i tańczy do rana
    Опубликовано: 1 день назад
  • How Leaders Decide Fast: The Science Behind Intuition in Leadership 3 недели назад
    How Leaders Decide Fast: The Science Behind Intuition in Leadership
    Опубликовано: 3 недели назад
  • The Emergence of Cognitive Science 4 недели назад
    The Emergence of Cognitive Science
    Опубликовано: 4 недели назад
  • How Insight Frees the Mind- entering cessation meditation 1 месяц назад
    How Insight Frees the Mind- entering cessation meditation
    Опубликовано: 1 месяц назад
  • 10 Scariest OSINT Tools in Kali Linux You Can Use Right Now! 3 часа назад
    10 Scariest OSINT Tools in Kali Linux You Can Use Right Now!
    Опубликовано: 3 часа назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5